Properties

Label 2-13200-1.1-c1-0-30
Degree $2$
Conductor $13200$
Sign $1$
Analytic cond. $105.402$
Root an. cond. $10.2665$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 11-s + 4·13-s + 8·19-s − 4·23-s + 27-s + 2·29-s − 4·31-s − 33-s + 8·37-s + 4·39-s − 2·41-s + 4·47-s − 7·49-s + 12·53-s + 8·57-s + 12·59-s + 2·61-s − 12·67-s − 4·69-s − 12·73-s − 12·79-s + 81-s + 8·83-s + 2·87-s + 6·89-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.301·11-s + 1.10·13-s + 1.83·19-s − 0.834·23-s + 0.192·27-s + 0.371·29-s − 0.718·31-s − 0.174·33-s + 1.31·37-s + 0.640·39-s − 0.312·41-s + 0.583·47-s − 49-s + 1.64·53-s + 1.05·57-s + 1.56·59-s + 0.256·61-s − 1.46·67-s − 0.481·69-s − 1.40·73-s − 1.35·79-s + 1/9·81-s + 0.878·83-s + 0.214·87-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13200\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(105.402\)
Root analytic conductor: \(10.2665\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.086982422\)
\(L(\frac12)\) \(\approx\) \(3.086982422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.27880484521405, −15.77906405510440, −15.06306068351977, −14.53994197552355, −13.95320247690123, −13.37989018728709, −13.13690425539523, −12.23335670787889, −11.65965717971483, −11.20106585030395, −10.34131283098727, −9.932564618829147, −9.256168870815270, −8.661903192849723, −8.098304143393585, −7.466576342404264, −6.957597910555607, −5.961046971808921, −5.603991082495799, −4.669851792776054, −3.912094075223639, −3.305385238740401, −2.597461439887645, −1.636964854313727, −0.7994687688430399, 0.7994687688430399, 1.636964854313727, 2.597461439887645, 3.305385238740401, 3.912094075223639, 4.669851792776054, 5.603991082495799, 5.961046971808921, 6.957597910555607, 7.466576342404264, 8.098304143393585, 8.661903192849723, 9.256168870815270, 9.932564618829147, 10.34131283098727, 11.20106585030395, 11.65965717971483, 12.23335670787889, 13.13690425539523, 13.37989018728709, 13.95320247690123, 14.53994197552355, 15.06306068351977, 15.77906405510440, 16.27880484521405

Graph of the $Z$-function along the critical line