Properties

Label 2-131904-1.1-c1-0-49
Degree $2$
Conductor $131904$
Sign $-1$
Analytic cond. $1053.25$
Root an. cond. $32.4539$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s + 11-s + 2·13-s + 3·17-s + 19-s + 2·23-s − 4·25-s − 6·29-s − 8·31-s − 4·35-s + 6·37-s + 43-s − 2·47-s + 9·49-s + 2·53-s − 55-s + 2·59-s + 61-s − 2·65-s − 10·67-s − 71-s − 4·73-s + 4·77-s − 4·79-s − 5·83-s − 3·85-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s + 0.301·11-s + 0.554·13-s + 0.727·17-s + 0.229·19-s + 0.417·23-s − 4/5·25-s − 1.11·29-s − 1.43·31-s − 0.676·35-s + 0.986·37-s + 0.152·43-s − 0.291·47-s + 9/7·49-s + 0.274·53-s − 0.134·55-s + 0.260·59-s + 0.128·61-s − 0.248·65-s − 1.22·67-s − 0.118·71-s − 0.468·73-s + 0.455·77-s − 0.450·79-s − 0.548·83-s − 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 131904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(131904\)    =    \(2^{6} \cdot 3^{2} \cdot 229\)
Sign: $-1$
Analytic conductor: \(1053.25\)
Root analytic conductor: \(32.4539\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 131904,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
229 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71041277751587, −13.25628075244865, −12.77126006377140, −12.12956745790746, −11.69128542977765, −11.32408409185369, −10.97286850703548, −10.51067348280349, −9.751220898551613, −9.338188206358649, −8.754112326146199, −8.280982660289391, −7.814137478706874, −7.404675126240532, −7.017321512641613, −6.105678057794111, −5.593537917501016, −5.311771931588142, −4.485465098997554, −4.130384244285834, −3.570129141976518, −2.936290390258475, −2.046753440220587, −1.556208688799363, −1.007850889035494, 0, 1.007850889035494, 1.556208688799363, 2.046753440220587, 2.936290390258475, 3.570129141976518, 4.130384244285834, 4.485465098997554, 5.311771931588142, 5.593537917501016, 6.105678057794111, 7.017321512641613, 7.404675126240532, 7.814137478706874, 8.280982660289391, 8.754112326146199, 9.338188206358649, 9.751220898551613, 10.51067348280349, 10.97286850703548, 11.32408409185369, 11.69128542977765, 12.12956745790746, 12.77126006377140, 13.25628075244865, 13.71041277751587

Graph of the $Z$-function along the critical line