Properties

Label 2-131040-1.1-c1-0-39
Degree $2$
Conductor $131040$
Sign $-1$
Analytic cond. $1046.35$
Root an. cond. $32.3474$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 13-s − 6·17-s + 4·19-s + 25-s − 10·29-s + 8·31-s + 35-s − 10·37-s + 6·41-s + 4·43-s + 4·47-s + 49-s − 6·53-s − 2·61-s − 65-s − 4·67-s + 8·71-s + 6·73-s + 8·79-s − 4·83-s + 6·85-s + 6·89-s − 91-s − 4·95-s + 14·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.277·13-s − 1.45·17-s + 0.917·19-s + 1/5·25-s − 1.85·29-s + 1.43·31-s + 0.169·35-s − 1.64·37-s + 0.937·41-s + 0.609·43-s + 0.583·47-s + 1/7·49-s − 0.824·53-s − 0.256·61-s − 0.124·65-s − 0.488·67-s + 0.949·71-s + 0.702·73-s + 0.900·79-s − 0.439·83-s + 0.650·85-s + 0.635·89-s − 0.104·91-s − 0.410·95-s + 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 131040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(131040\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1046.35\)
Root analytic conductor: \(32.3474\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 131040,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68108626436724, −13.34427867712202, −12.65722247407599, −12.35739010906306, −11.78116986608613, −11.21969412048924, −10.97345585709405, −10.40191846430061, −9.807018156175116, −9.187432229813661, −9.010964558780659, −8.367594109089200, −7.685405013813376, −7.451083998952823, −6.676299506558938, −6.428421782855614, −5.703851954019200, −5.173458551510613, −4.601073452463018, −3.949936441452143, −3.593229749499827, −2.870507507549017, −2.292750256791690, −1.583495280779497, −0.7421524648483159, 0, 0.7421524648483159, 1.583495280779497, 2.292750256791690, 2.870507507549017, 3.593229749499827, 3.949936441452143, 4.601073452463018, 5.173458551510613, 5.703851954019200, 6.428421782855614, 6.676299506558938, 7.451083998952823, 7.685405013813376, 8.367594109089200, 9.010964558780659, 9.187432229813661, 9.807018156175116, 10.40191846430061, 10.97345585709405, 11.21969412048924, 11.78116986608613, 12.35739010906306, 12.65722247407599, 13.34427867712202, 13.68108626436724

Graph of the $Z$-function along the critical line