Properties

Label 2-130130-1.1-c1-0-67
Degree $2$
Conductor $130130$
Sign $1$
Analytic cond. $1039.09$
Root an. cond. $32.2349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s + 5-s − 2·6-s − 7-s + 8-s + 9-s + 10-s + 11-s − 2·12-s − 14-s − 2·15-s + 16-s − 6·17-s + 18-s − 2·19-s + 20-s + 2·21-s + 22-s − 6·23-s − 2·24-s + 25-s + 4·27-s − 28-s − 2·30-s − 8·31-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s − 0.577·12-s − 0.267·14-s − 0.516·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 0.458·19-s + 0.223·20-s + 0.436·21-s + 0.213·22-s − 1.25·23-s − 0.408·24-s + 1/5·25-s + 0.769·27-s − 0.188·28-s − 0.365·30-s − 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130130\)    =    \(2 \cdot 5 \cdot 7 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1039.09\)
Root analytic conductor: \(32.2349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 130130,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78859020007677, −13.39176282637189, −13.02966684594928, −12.51841903953302, −12.03127346537377, −11.56951190171090, −11.21722331394963, −10.73043679240218, −10.24352200223557, −9.779861653174034, −9.191210962869731, −8.526273032013279, −8.169765421575093, −7.173535369806269, −6.865532419689976, −6.356102427106565, −5.993698032925355, −5.559772393845641, −4.867413576814217, −4.560204457911096, −3.868243458201565, −3.302495440747127, −2.541619397543033, −1.886946507140484, −1.382233245886780, 0, 0, 1.382233245886780, 1.886946507140484, 2.541619397543033, 3.302495440747127, 3.868243458201565, 4.560204457911096, 4.867413576814217, 5.559772393845641, 5.993698032925355, 6.356102427106565, 6.865532419689976, 7.173535369806269, 8.169765421575093, 8.526273032013279, 9.191210962869731, 9.779861653174034, 10.24352200223557, 10.73043679240218, 11.21722331394963, 11.56951190171090, 12.03127346537377, 12.51841903953302, 13.02966684594928, 13.39176282637189, 13.78859020007677

Graph of the $Z$-function along the critical line