Properties

Label 2-130050-1.1-c1-0-36
Degree $2$
Conductor $130050$
Sign $1$
Analytic cond. $1038.45$
Root an. cond. $32.2250$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s − 2·11-s + 6·13-s + 2·14-s + 16-s − 8·19-s + 2·22-s + 2·23-s − 6·26-s − 2·28-s + 6·29-s + 2·31-s − 32-s + 6·37-s + 8·38-s + 2·41-s + 4·43-s − 2·44-s − 2·46-s + 4·47-s − 3·49-s + 6·52-s − 10·53-s + 2·56-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s − 0.603·11-s + 1.66·13-s + 0.534·14-s + 1/4·16-s − 1.83·19-s + 0.426·22-s + 0.417·23-s − 1.17·26-s − 0.377·28-s + 1.11·29-s + 0.359·31-s − 0.176·32-s + 0.986·37-s + 1.29·38-s + 0.312·41-s + 0.609·43-s − 0.301·44-s − 0.294·46-s + 0.583·47-s − 3/7·49-s + 0.832·52-s − 1.37·53-s + 0.267·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1038.45\)
Root analytic conductor: \(32.2250\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 130050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.458212347\)
\(L(\frac12)\) \(\approx\) \(1.458212347\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33471643646272, −12.84541353063839, −12.74263201520404, −12.02995728916267, −11.36634870385757, −10.83833640666933, −10.71803050375839, −10.14009929544849, −9.523163014361230, −9.118424892767970, −8.589475725278435, −8.047717552254978, −7.924461339827246, −6.902085292897392, −6.438938350053229, −6.325441307366974, −5.634332051345798, −4.943557612847104, −4.166686284058753, −3.799854925865220, −2.982273865591414, −2.585986297589011, −1.865875197080452, −1.050530603859885, −0.4678359957439603, 0.4678359957439603, 1.050530603859885, 1.865875197080452, 2.585986297589011, 2.982273865591414, 3.799854925865220, 4.166686284058753, 4.943557612847104, 5.634332051345798, 6.325441307366974, 6.438938350053229, 6.902085292897392, 7.924461339827246, 8.047717552254978, 8.589475725278435, 9.118424892767970, 9.523163014361230, 10.14009929544849, 10.71803050375839, 10.83833640666933, 11.36634870385757, 12.02995728916267, 12.74263201520404, 12.84541353063839, 13.33471643646272

Graph of the $Z$-function along the critical line