Properties

Label 2-128700-1.1-c1-0-6
Degree $2$
Conductor $128700$
Sign $1$
Analytic cond. $1027.67$
Root an. cond. $32.0573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 11-s − 13-s − 3·17-s + 5·19-s − 6·23-s + 6·29-s + 2·31-s − 5·37-s − 9·41-s + 43-s − 3·47-s − 3·49-s + 12·59-s + 8·61-s − 5·67-s − 12·71-s − 2·73-s − 2·77-s − 10·79-s − 6·83-s + 2·91-s + 97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.301·11-s − 0.277·13-s − 0.727·17-s + 1.14·19-s − 1.25·23-s + 1.11·29-s + 0.359·31-s − 0.821·37-s − 1.40·41-s + 0.152·43-s − 0.437·47-s − 3/7·49-s + 1.56·59-s + 1.02·61-s − 0.610·67-s − 1.42·71-s − 0.234·73-s − 0.227·77-s − 1.12·79-s − 0.658·83-s + 0.209·91-s + 0.101·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128700\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(1027.67\)
Root analytic conductor: \(32.0573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 128700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.138378449\)
\(L(\frac12)\) \(\approx\) \(1.138378449\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.41981115160370, −13.16068333028229, −12.45481387586926, −12.02228375623602, −11.65442550225181, −11.24549918104528, −10.34132467648276, −10.08768277665883, −9.774397916698371, −9.127798473935092, −8.495641794776128, −8.320116264416421, −7.411069373176721, −7.087484377430094, −6.511537156256726, −6.112587344138341, −5.464458541079983, −4.916431055468408, −4.333890769037835, −3.720857320004455, −3.185143907016318, −2.641873372338866, −1.915693981363827, −1.235473993527010, −0.3294208219150571, 0.3294208219150571, 1.235473993527010, 1.915693981363827, 2.641873372338866, 3.185143907016318, 3.720857320004455, 4.333890769037835, 4.916431055468408, 5.464458541079983, 6.112587344138341, 6.511537156256726, 7.087484377430094, 7.411069373176721, 8.320116264416421, 8.495641794776128, 9.127798473935092, 9.774397916698371, 10.08768277665883, 10.34132467648276, 11.24549918104528, 11.65442550225181, 12.02228375623602, 12.45481387586926, 13.16068333028229, 13.41981115160370

Graph of the $Z$-function along the critical line