Properties

Label 2-128700-1.1-c1-0-34
Degree $2$
Conductor $128700$
Sign $-1$
Analytic cond. $1027.67$
Root an. cond. $32.0573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11-s + 13-s − 4·17-s − 4·19-s − 6·29-s − 2·37-s + 2·41-s + 4·43-s + 12·47-s − 7·49-s + 10·53-s − 8·59-s + 6·61-s − 2·67-s − 10·73-s + 10·79-s + 6·83-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.301·11-s + 0.277·13-s − 0.970·17-s − 0.917·19-s − 1.11·29-s − 0.328·37-s + 0.312·41-s + 0.609·43-s + 1.75·47-s − 49-s + 1.37·53-s − 1.04·59-s + 0.768·61-s − 0.244·67-s − 1.17·73-s + 1.12·79-s + 0.658·83-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128700\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1027.67\)
Root analytic conductor: \(32.0573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 128700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46229982168805, −13.43300973798522, −12.79029905629393, −12.35019518794668, −11.83266574901098, −11.21938069917714, −10.83301653630736, −10.48928182925139, −9.906063520678862, −9.145734010097009, −8.988099372485711, −8.420343819361329, −7.786703069607118, −7.372850835407893, −6.774465263850420, −6.276069721508203, −5.753348439251508, −5.235230207322398, −4.545066936026939, −4.077154275324348, −3.594020495054251, −2.758004904005645, −2.245034310660496, −1.696994082124980, −0.7635646126831167, 0, 0.7635646126831167, 1.696994082124980, 2.245034310660496, 2.758004904005645, 3.594020495054251, 4.077154275324348, 4.545066936026939, 5.235230207322398, 5.753348439251508, 6.276069721508203, 6.774465263850420, 7.372850835407893, 7.786703069607118, 8.420343819361329, 8.988099372485711, 9.145734010097009, 9.906063520678862, 10.48928182925139, 10.83301653630736, 11.21938069917714, 11.83266574901098, 12.35019518794668, 12.79029905629393, 13.43300973798522, 13.46229982168805

Graph of the $Z$-function along the critical line