Properties

Label 2-128700-1.1-c1-0-11
Degree $2$
Conductor $128700$
Sign $1$
Analytic cond. $1027.67$
Root an. cond. $32.0573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 11-s − 13-s + 2·17-s − 4·19-s + 4·29-s + 2·31-s − 2·37-s + 6·41-s + 6·43-s − 4·47-s + 9·49-s − 6·53-s + 4·59-s + 10·61-s + 12·67-s − 4·71-s + 6·73-s + 4·77-s + 16·79-s + 18·83-s + 10·89-s + 4·91-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.51·7-s − 0.301·11-s − 0.277·13-s + 0.485·17-s − 0.917·19-s + 0.742·29-s + 0.359·31-s − 0.328·37-s + 0.937·41-s + 0.914·43-s − 0.583·47-s + 9/7·49-s − 0.824·53-s + 0.520·59-s + 1.28·61-s + 1.46·67-s − 0.474·71-s + 0.702·73-s + 0.455·77-s + 1.80·79-s + 1.97·83-s + 1.05·89-s + 0.419·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128700\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(1027.67\)
Root analytic conductor: \(32.0573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 128700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.540844295\)
\(L(\frac12)\) \(\approx\) \(1.540844295\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.41385897937804, −12.85056126359544, −12.69332559191675, −12.16934594278234, −11.68237992772102, −10.94873161620149, −10.54311289394413, −10.10356682486883, −9.583152399788453, −9.255785063142746, −8.673483816671235, −7.968029374002195, −7.729611623262532, −6.776626356634039, −6.644631369868998, −6.122084123959565, −5.497636302452592, −4.948904336380481, −4.294872151176223, −3.635442835720939, −3.279960105077770, −2.471352043998841, −2.202446376124285, −1.011276528156448, −0.4321112570884074, 0.4321112570884074, 1.011276528156448, 2.202446376124285, 2.471352043998841, 3.279960105077770, 3.635442835720939, 4.294872151176223, 4.948904336380481, 5.497636302452592, 6.122084123959565, 6.644631369868998, 6.776626356634039, 7.729611623262532, 7.968029374002195, 8.673483816671235, 9.255785063142746, 9.583152399788453, 10.10356682486883, 10.54311289394413, 10.94873161620149, 11.68237992772102, 12.16934594278234, 12.69332559191675, 12.85056126359544, 13.41385897937804

Graph of the $Z$-function along the critical line