Properties

Label 2-12870-1.1-c1-0-27
Degree $2$
Conductor $12870$
Sign $-1$
Analytic cond. $102.767$
Root an. cond. $10.1374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 4·7-s − 8-s − 10-s − 11-s − 13-s + 4·14-s + 16-s − 2·17-s + 4·19-s + 20-s + 22-s + 25-s + 26-s − 4·28-s − 2·29-s + 8·31-s − 32-s + 2·34-s − 4·35-s − 6·37-s − 4·38-s − 40-s + 6·41-s − 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.51·7-s − 0.353·8-s − 0.316·10-s − 0.301·11-s − 0.277·13-s + 1.06·14-s + 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.223·20-s + 0.213·22-s + 1/5·25-s + 0.196·26-s − 0.755·28-s − 0.371·29-s + 1.43·31-s − 0.176·32-s + 0.342·34-s − 0.676·35-s − 0.986·37-s − 0.648·38-s − 0.158·40-s + 0.937·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12870 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12870\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(102.767\)
Root analytic conductor: \(10.1374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 12870,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.46468008703912, −16.09701269564432, −15.64064881444061, −15.05651863549642, −14.29224237971389, −13.59254425200457, −13.18407979861649, −12.62422802452167, −11.92674449633213, −11.46250289221720, −10.52398522625473, −10.09022345089196, −9.743293503640888, −9.037521144720020, −8.628173697155155, −7.688021648909567, −7.120090896740048, −6.554396644956958, −5.968310933677756, −5.327873773771976, −4.389400874809105, −3.393864025818160, −2.861721449420555, −2.120195875081628, −0.9825866260397394, 0, 0.9825866260397394, 2.120195875081628, 2.861721449420555, 3.393864025818160, 4.389400874809105, 5.327873773771976, 5.968310933677756, 6.554396644956958, 7.120090896740048, 7.688021648909567, 8.628173697155155, 9.037521144720020, 9.743293503640888, 10.09022345089196, 10.52398522625473, 11.46250289221720, 11.92674449633213, 12.62422802452167, 13.18407979861649, 13.59254425200457, 14.29224237971389, 15.05651863549642, 15.64064881444061, 16.09701269564432, 16.46468008703912

Graph of the $Z$-function along the critical line