Properties

Label 2-126400-1.1-c1-0-33
Degree $2$
Conductor $126400$
Sign $-1$
Analytic cond. $1009.30$
Root an. cond. $31.7696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·7-s − 2·9-s − 2·11-s − 13-s + 2·17-s + 3·21-s + 6·23-s + 5·27-s + 10·29-s + 2·31-s + 2·33-s − 2·37-s + 39-s + 2·41-s + 4·43-s − 3·47-s + 2·49-s − 2·51-s + 4·53-s − 5·59-s − 12·61-s + 6·63-s + 8·67-s − 6·69-s − 13·71-s + 6·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.13·7-s − 2/3·9-s − 0.603·11-s − 0.277·13-s + 0.485·17-s + 0.654·21-s + 1.25·23-s + 0.962·27-s + 1.85·29-s + 0.359·31-s + 0.348·33-s − 0.328·37-s + 0.160·39-s + 0.312·41-s + 0.609·43-s − 0.437·47-s + 2/7·49-s − 0.280·51-s + 0.549·53-s − 0.650·59-s − 1.53·61-s + 0.755·63-s + 0.977·67-s − 0.722·69-s − 1.54·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126400\)    =    \(2^{6} \cdot 5^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(1009.30\)
Root analytic conductor: \(31.7696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 126400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55799270298361, −13.39393370408371, −12.58416915875017, −12.30620077184460, −12.04724477880239, −11.20299378014238, −10.93091685977671, −10.35137508509604, −9.981349727138802, −9.392601632119694, −8.969587519713649, −8.271803126819995, −7.993957496208503, −7.057220807248106, −6.852454516895850, −6.258577769973982, −5.713356035205257, −5.336024749296688, −4.681940721464962, −4.208668346781701, −3.132688877298660, −3.021889710395373, −2.517392380556933, −1.388036642620924, −0.6862850783593002, 0, 0.6862850783593002, 1.388036642620924, 2.517392380556933, 3.021889710395373, 3.132688877298660, 4.208668346781701, 4.681940721464962, 5.336024749296688, 5.713356035205257, 6.258577769973982, 6.852454516895850, 7.057220807248106, 7.993957496208503, 8.271803126819995, 8.969587519713649, 9.392601632119694, 9.981349727138802, 10.35137508509604, 10.93091685977671, 11.20299378014238, 12.04724477880239, 12.30620077184460, 12.58416915875017, 13.39393370408371, 13.55799270298361

Graph of the $Z$-function along the critical line