Properties

Label 2-124800-1.1-c1-0-145
Degree $2$
Conductor $124800$
Sign $1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s − 2·11-s − 13-s + 2·17-s − 6·19-s − 2·21-s − 6·23-s + 27-s − 6·29-s − 2·33-s − 10·37-s − 39-s + 6·41-s − 8·43-s + 6·47-s − 3·49-s + 2·51-s + 10·53-s − 6·57-s − 6·59-s − 10·61-s − 2·63-s − 12·67-s − 6·69-s − 12·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.603·11-s − 0.277·13-s + 0.485·17-s − 1.37·19-s − 0.436·21-s − 1.25·23-s + 0.192·27-s − 1.11·29-s − 0.348·33-s − 1.64·37-s − 0.160·39-s + 0.937·41-s − 1.21·43-s + 0.875·47-s − 3/7·49-s + 0.280·51-s + 1.37·53-s − 0.794·57-s − 0.781·59-s − 1.28·61-s − 0.251·63-s − 1.46·67-s − 0.722·69-s − 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89812802348091, −13.41359552911885, −13.22485896915704, −12.56646526903320, −12.09224540425311, −11.89379366343704, −10.79422895563373, −10.64386049307164, −10.13189765951293, −9.624661400152717, −9.139610256950920, −8.623725986562684, −8.167695753485554, −7.572388592734999, −7.205316520483651, −6.574904566586799, −5.987059836925660, −5.597433851770375, −4.883796017337666, −4.150662719258570, −3.857802670910548, −3.081026206852519, −2.673803369174158, −1.943480779701256, −1.446349703536714, 0, 0, 1.446349703536714, 1.943480779701256, 2.673803369174158, 3.081026206852519, 3.857802670910548, 4.150662719258570, 4.883796017337666, 5.597433851770375, 5.987059836925660, 6.574904566586799, 7.205316520483651, 7.572388592734999, 8.167695753485554, 8.623725986562684, 9.139610256950920, 9.624661400152717, 10.13189765951293, 10.64386049307164, 10.79422895563373, 11.89379366343704, 12.09224540425311, 12.56646526903320, 13.22485896915704, 13.41359552911885, 13.89812802348091

Graph of the $Z$-function along the critical line