Properties

Label 2-124800-1.1-c1-0-129
Degree $2$
Conductor $124800$
Sign $1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5·7-s + 9-s − 11-s + 13-s − 3·17-s + 4·19-s + 5·21-s − 6·23-s − 27-s + 7·29-s + 31-s + 33-s − 12·37-s − 39-s − 10·41-s + 8·43-s − 11·47-s + 18·49-s + 3·51-s − 9·53-s − 4·57-s − 3·59-s − 11·61-s − 5·63-s + 9·67-s + 6·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.88·7-s + 1/3·9-s − 0.301·11-s + 0.277·13-s − 0.727·17-s + 0.917·19-s + 1.09·21-s − 1.25·23-s − 0.192·27-s + 1.29·29-s + 0.179·31-s + 0.174·33-s − 1.97·37-s − 0.160·39-s − 1.56·41-s + 1.21·43-s − 1.60·47-s + 18/7·49-s + 0.420·51-s − 1.23·53-s − 0.529·57-s − 0.390·59-s − 1.40·61-s − 0.629·63-s + 1.09·67-s + 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93415622179630, −13.47711054281055, −13.02650169610423, −12.50890250663728, −12.07679210462877, −11.82626756112394, −11.04493312348455, −10.46676618468525, −10.21559559386801, −9.688079889606725, −9.278421705631704, −8.712207552288155, −8.096295639982530, −7.532322213911290, −6.811351218939889, −6.512546900122553, −6.218654966111411, −5.507865036059438, −5.022338794244973, −4.370681206578607, −3.642012291633993, −3.277092092142128, −2.703491949505977, −1.896532403442343, −1.113346062021959, 0, 0, 1.113346062021959, 1.896532403442343, 2.703491949505977, 3.277092092142128, 3.642012291633993, 4.370681206578607, 5.022338794244973, 5.507865036059438, 6.218654966111411, 6.512546900122553, 6.811351218939889, 7.532322213911290, 8.096295639982530, 8.712207552288155, 9.278421705631704, 9.688079889606725, 10.21559559386801, 10.46676618468525, 11.04493312348455, 11.82626756112394, 12.07679210462877, 12.50890250663728, 13.02650169610423, 13.47711054281055, 13.93415622179630

Graph of the $Z$-function along the critical line