Properties

Label 2-123840-1.1-c1-0-45
Degree $2$
Conductor $123840$
Sign $1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s + 4·11-s − 2·13-s + 6·17-s − 6·19-s + 6·23-s + 25-s + 2·29-s + 4·31-s + 4·35-s − 8·37-s + 8·41-s − 43-s + 6·47-s + 9·49-s − 6·53-s − 4·55-s + 10·61-s + 2·65-s + 12·67-s − 16·71-s + 16·73-s − 16·77-s + 4·79-s + 6·83-s − 6·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s + 1.20·11-s − 0.554·13-s + 1.45·17-s − 1.37·19-s + 1.25·23-s + 1/5·25-s + 0.371·29-s + 0.718·31-s + 0.676·35-s − 1.31·37-s + 1.24·41-s − 0.152·43-s + 0.875·47-s + 9/7·49-s − 0.824·53-s − 0.539·55-s + 1.28·61-s + 0.248·65-s + 1.46·67-s − 1.89·71-s + 1.87·73-s − 1.82·77-s + 0.450·79-s + 0.658·83-s − 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.098450327\)
\(L(\frac12)\) \(\approx\) \(2.098450327\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53063606034897, −12.82198547360593, −12.57617638935274, −12.19318528015222, −11.79509731162131, −11.02770963507632, −10.66459821197353, −10.02591873135861, −9.621576154073589, −9.263298461470572, −8.623907254587132, −8.250565609508538, −7.477047864398301, −6.866794509697475, −6.771953719293970, −6.059893390602652, −5.631059615786737, −4.819046124152477, −4.319294817005047, −3.600447742112419, −3.357082283436828, −2.700743534808692, −1.988406534910153, −0.9810956575279883, −0.5384057508709303, 0.5384057508709303, 0.9810956575279883, 1.988406534910153, 2.700743534808692, 3.357082283436828, 3.600447742112419, 4.319294817005047, 4.819046124152477, 5.631059615786737, 6.059893390602652, 6.771953719293970, 6.866794509697475, 7.477047864398301, 8.250565609508538, 8.623907254587132, 9.263298461470572, 9.621576154073589, 10.02591873135861, 10.66459821197353, 11.02770963507632, 11.79509731162131, 12.19318528015222, 12.57617638935274, 12.82198547360593, 13.53063606034897

Graph of the $Z$-function along the critical line