Properties

Label 2-121275-1.1-c1-0-66
Degree $2$
Conductor $121275$
Sign $-1$
Analytic cond. $968.385$
Root an. cond. $31.1188$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 11-s − 6·13-s − 16-s − 6·17-s + 4·19-s + 22-s − 8·23-s + 6·26-s + 10·29-s + 4·31-s − 5·32-s + 6·34-s − 6·37-s − 4·38-s − 10·41-s − 4·43-s + 44-s + 8·46-s + 4·47-s + 6·52-s + 6·53-s − 10·58-s + 6·61-s − 4·62-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 0.301·11-s − 1.66·13-s − 1/4·16-s − 1.45·17-s + 0.917·19-s + 0.213·22-s − 1.66·23-s + 1.17·26-s + 1.85·29-s + 0.718·31-s − 0.883·32-s + 1.02·34-s − 0.986·37-s − 0.648·38-s − 1.56·41-s − 0.609·43-s + 0.150·44-s + 1.17·46-s + 0.583·47-s + 0.832·52-s + 0.824·53-s − 1.31·58-s + 0.768·61-s − 0.508·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121275\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(968.385\)
Root analytic conductor: \(31.1188\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.86606037418653, −13.40128992857603, −12.87764197412591, −12.17656176234829, −11.90478661061404, −11.49751743486696, −10.54660265216391, −10.18769103307795, −10.06192430105098, −9.433277094845558, −8.876307879607145, −8.398404318502396, −8.040138820025404, −7.451787962226454, −6.897249441499206, −6.564079915855956, −5.647845706328547, −5.097436922915343, −4.678940207401108, −4.251922937510458, −3.511466105850293, −2.699312347920845, −2.200565749662117, −1.541855565951345, −0.5893585800583939, 0, 0.5893585800583939, 1.541855565951345, 2.200565749662117, 2.699312347920845, 3.511466105850293, 4.251922937510458, 4.678940207401108, 5.097436922915343, 5.647845706328547, 6.564079915855956, 6.897249441499206, 7.451787962226454, 8.040138820025404, 8.398404318502396, 8.876307879607145, 9.433277094845558, 10.06192430105098, 10.18769103307795, 10.54660265216391, 11.49751743486696, 11.90478661061404, 12.17656176234829, 12.87764197412591, 13.40128992857603, 13.86606037418653

Graph of the $Z$-function along the critical line