Properties

Label 2-119952-1.1-c1-0-39
Degree $2$
Conductor $119952$
Sign $1$
Analytic cond. $957.821$
Root an. cond. $30.9486$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·11-s − 4·13-s − 17-s − 5·19-s + 9·23-s − 4·25-s + 6·29-s − 8·31-s − 11·37-s + 4·41-s + 43-s − 2·47-s − 6·53-s + 2·55-s + 9·59-s + 6·61-s − 4·65-s + 7·67-s + 71-s + 4·73-s + 8·79-s − 4·83-s − 85-s + 15·89-s − 5·95-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.603·11-s − 1.10·13-s − 0.242·17-s − 1.14·19-s + 1.87·23-s − 4/5·25-s + 1.11·29-s − 1.43·31-s − 1.80·37-s + 0.624·41-s + 0.152·43-s − 0.291·47-s − 0.824·53-s + 0.269·55-s + 1.17·59-s + 0.768·61-s − 0.496·65-s + 0.855·67-s + 0.118·71-s + 0.468·73-s + 0.900·79-s − 0.439·83-s − 0.108·85-s + 1.58·89-s − 0.512·95-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 119952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(119952\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(957.821\)
Root analytic conductor: \(30.9486\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 119952,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.943371172\)
\(L(\frac12)\) \(\approx\) \(1.943371172\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43915778369711, −13.13384846029815, −12.56849009511589, −12.21579239418533, −11.68988074947645, −10.99554319911965, −10.74805424837693, −10.17903224513083, −9.469890463782734, −9.357118777072784, −8.643383438141836, −8.297987666230866, −7.525100036382230, −6.891416272023502, −6.794971840561408, −6.073695010203921, −5.388487994560044, −4.997509564221383, −4.467541479635363, −3.743163038832715, −3.256646628648890, −2.373799094811841, −2.082597362085184, −1.279376434766795, −0.4268473750957154, 0.4268473750957154, 1.279376434766795, 2.082597362085184, 2.373799094811841, 3.256646628648890, 3.743163038832715, 4.467541479635363, 4.997509564221383, 5.388487994560044, 6.073695010203921, 6.794971840561408, 6.891416272023502, 7.525100036382230, 8.297987666230866, 8.643383438141836, 9.357118777072784, 9.469890463782734, 10.17903224513083, 10.74805424837693, 10.99554319911965, 11.68988074947645, 12.21579239418533, 12.56849009511589, 13.13384846029815, 13.43915778369711

Graph of the $Z$-function along the critical line