Properties

Label 2-11616-1.1-c1-0-9
Degree $2$
Conductor $11616$
Sign $1$
Analytic cond. $92.7542$
Root an. cond. $9.63089$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 7-s + 9-s + 2·13-s + 2·15-s + 4·17-s − 19-s − 21-s − 6·23-s − 25-s + 27-s + 6·29-s − 5·31-s − 2·35-s + 7·37-s + 2·39-s + 4·43-s + 2·45-s + 4·47-s − 6·49-s + 4·51-s + 6·53-s − 57-s − 6·59-s + 61-s − 63-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 0.377·7-s + 1/3·9-s + 0.554·13-s + 0.516·15-s + 0.970·17-s − 0.229·19-s − 0.218·21-s − 1.25·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s − 0.898·31-s − 0.338·35-s + 1.15·37-s + 0.320·39-s + 0.609·43-s + 0.298·45-s + 0.583·47-s − 6/7·49-s + 0.560·51-s + 0.824·53-s − 0.132·57-s − 0.781·59-s + 0.128·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11616\)    =    \(2^{5} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(92.7542\)
Root analytic conductor: \(9.63089\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11616,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.315994330\)
\(L(\frac12)\) \(\approx\) \(3.315994330\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.43407943376882, −15.84313060532942, −15.32356791062093, −14.53588527425852, −14.04760202668395, −13.78928221272395, −12.96933696574871, −12.64359672369939, −11.89851948088779, −11.22360754656497, −10.26144443482624, −10.15105110660959, −9.364507133139025, −8.963533238704423, −8.063740894141716, −7.729907312603713, −6.786845288778303, −6.093789961395689, −5.751962700830112, −4.813733228734925, −3.950700411931768, −3.349818262778784, −2.463530640446391, −1.828191560864866, −0.8233380484355209, 0.8233380484355209, 1.828191560864866, 2.463530640446391, 3.349818262778784, 3.950700411931768, 4.813733228734925, 5.751962700830112, 6.093789961395689, 6.786845288778303, 7.729907312603713, 8.063740894141716, 8.963533238704423, 9.364507133139025, 10.15105110660959, 10.26144443482624, 11.22360754656497, 11.89851948088779, 12.64359672369939, 12.96933696574871, 13.78928221272395, 14.04760202668395, 14.53588527425852, 15.32356791062093, 15.84313060532942, 16.43407943376882

Graph of the $Z$-function along the critical line