Properties

Label 2-11552-1.1-c1-0-16
Degree $2$
Conductor $11552$
Sign $1$
Analytic cond. $92.2431$
Root an. cond. $9.60433$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2·5-s + 2·7-s + 6·9-s + 3·11-s − 2·13-s + 6·15-s − 6·17-s + 6·21-s + 4·23-s − 25-s + 9·27-s + 6·29-s − 8·31-s + 9·33-s + 4·35-s + 8·37-s − 6·39-s + 3·41-s + 8·43-s + 12·45-s − 10·47-s − 3·49-s − 18·51-s − 2·53-s + 6·55-s − 3·59-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.894·5-s + 0.755·7-s + 2·9-s + 0.904·11-s − 0.554·13-s + 1.54·15-s − 1.45·17-s + 1.30·21-s + 0.834·23-s − 1/5·25-s + 1.73·27-s + 1.11·29-s − 1.43·31-s + 1.56·33-s + 0.676·35-s + 1.31·37-s − 0.960·39-s + 0.468·41-s + 1.21·43-s + 1.78·45-s − 1.45·47-s − 3/7·49-s − 2.52·51-s − 0.274·53-s + 0.809·55-s − 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11552\)    =    \(2^{5} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(92.2431\)
Root analytic conductor: \(9.60433\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.092665252\)
\(L(\frac12)\) \(\approx\) \(6.092665252\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.24211688362808, −15.78972575587485, −14.86910636926941, −14.69703915872070, −14.29047719471600, −13.69852141534347, −13.10992103284543, −12.81650178335707, −11.85446136136222, −11.13500163673099, −10.58420375767198, −9.623302383398618, −9.346610202237779, −8.978723389740678, −8.150170870189697, −7.796663356696311, −6.839127744577902, −6.524887387420352, −5.407549114522538, −4.613206378899174, −4.083432665530738, −3.226398903568339, −2.303262825441711, −2.053601849354159, −1.110088295828571, 1.110088295828571, 2.053601849354159, 2.303262825441711, 3.226398903568339, 4.083432665530738, 4.613206378899174, 5.407549114522538, 6.524887387420352, 6.839127744577902, 7.796663356696311, 8.150170870189697, 8.978723389740678, 9.346610202237779, 9.623302383398618, 10.58420375767198, 11.13500163673099, 11.85446136136222, 12.81650178335707, 13.10992103284543, 13.69852141534347, 14.29047719471600, 14.69703915872070, 14.86910636926941, 15.78972575587485, 16.24211688362808

Graph of the $Z$-function along the critical line