Properties

Label 2-114660-1.1-c1-0-48
Degree $2$
Conductor $114660$
Sign $-1$
Analytic cond. $915.564$
Root an. cond. $30.2582$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 6·11-s + 13-s − 2·17-s + 2·19-s + 4·23-s + 25-s − 2·29-s + 2·31-s + 2·37-s − 6·41-s + 6·47-s + 2·53-s − 6·55-s − 6·59-s − 14·61-s − 65-s + 2·67-s + 10·71-s + 6·73-s + 4·79-s + 2·83-s + 2·85-s − 14·89-s − 2·95-s − 18·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.80·11-s + 0.277·13-s − 0.485·17-s + 0.458·19-s + 0.834·23-s + 1/5·25-s − 0.371·29-s + 0.359·31-s + 0.328·37-s − 0.937·41-s + 0.875·47-s + 0.274·53-s − 0.809·55-s − 0.781·59-s − 1.79·61-s − 0.124·65-s + 0.244·67-s + 1.18·71-s + 0.702·73-s + 0.450·79-s + 0.219·83-s + 0.216·85-s − 1.48·89-s − 0.205·95-s − 1.82·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(915.564\)
Root analytic conductor: \(30.2582\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 114660,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85290274088981, −13.54066950302156, −12.76877496834823, −12.32894225142594, −11.92983048984970, −11.43603291559627, −11.01503985716777, −10.62918817135074, −9.747912127012169, −9.461958650739369, −8.895705225602286, −8.589623768075742, −7.887470316784162, −7.368346495879638, −6.738675472464090, −6.524306891515224, −5.854527061370481, −5.200107520063036, −4.572591885890738, −4.071280910839130, −3.588783175443896, −3.033702369964955, −2.258768369119348, −1.391783731098836, −1.031621882934532, 0, 1.031621882934532, 1.391783731098836, 2.258768369119348, 3.033702369964955, 3.588783175443896, 4.071280910839130, 4.572591885890738, 5.200107520063036, 5.854527061370481, 6.524306891515224, 6.738675472464090, 7.368346495879638, 7.887470316784162, 8.589623768075742, 8.895705225602286, 9.461958650739369, 9.747912127012169, 10.62918817135074, 11.01503985716777, 11.43603291559627, 11.92983048984970, 12.32894225142594, 12.76877496834823, 13.54066950302156, 13.85290274088981

Graph of the $Z$-function along the critical line