Properties

Label 2-11466-1.1-c1-0-4
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s − 11-s − 13-s + 16-s + 2·17-s − 2·19-s − 20-s + 22-s + 2·23-s − 4·25-s + 26-s + 7·29-s + 3·31-s − 32-s − 2·34-s − 2·37-s + 2·38-s + 40-s − 8·41-s − 8·43-s − 44-s − 2·46-s + 4·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 0.301·11-s − 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.458·19-s − 0.223·20-s + 0.213·22-s + 0.417·23-s − 4/5·25-s + 0.196·26-s + 1.29·29-s + 0.538·31-s − 0.176·32-s − 0.342·34-s − 0.328·37-s + 0.324·38-s + 0.158·40-s − 1.24·41-s − 1.21·43-s − 0.150·44-s − 0.294·46-s + 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9706982781\)
\(L(\frac12)\) \(\approx\) \(0.9706982781\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.58586938668035, −15.81096457645879, −15.44232547123464, −14.95313690245690, −14.21288642815555, −13.61584865487483, −12.96218944345176, −12.18090231948082, −11.86821483861089, −11.24768020975552, −10.43547245000408, −10.14578234223283, −9.457841208049120, −8.708370505884880, −8.120412834476169, −7.790859682544867, −6.803064751634443, −6.560819137739500, −5.500468483194962, −4.928539306764707, −4.020492447098015, −3.244839760646103, −2.485773796619173, −1.563779429901522, −0.5102877445526610, 0.5102877445526610, 1.563779429901522, 2.485773796619173, 3.244839760646103, 4.020492447098015, 4.928539306764707, 5.500468483194962, 6.560819137739500, 6.803064751634443, 7.790859682544867, 8.120412834476169, 8.708370505884880, 9.457841208049120, 10.14578234223283, 10.43547245000408, 11.24768020975552, 11.86821483861089, 12.18090231948082, 12.96218944345176, 13.61584865487483, 14.21288642815555, 14.95313690245690, 15.44232547123464, 15.81096457645879, 16.58586938668035

Graph of the $Z$-function along the critical line