Properties

Label 2-11466-1.1-c1-0-8
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 8-s + 2·10-s − 4·11-s + 13-s + 16-s + 4·17-s + 2·19-s − 2·20-s + 4·22-s + 8·23-s − 25-s − 26-s + 6·29-s + 4·31-s − 32-s − 4·34-s − 2·37-s − 2·38-s + 2·40-s − 4·43-s − 4·44-s − 8·46-s − 12·47-s + 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.353·8-s + 0.632·10-s − 1.20·11-s + 0.277·13-s + 1/4·16-s + 0.970·17-s + 0.458·19-s − 0.447·20-s + 0.852·22-s + 1.66·23-s − 1/5·25-s − 0.196·26-s + 1.11·29-s + 0.718·31-s − 0.176·32-s − 0.685·34-s − 0.328·37-s − 0.324·38-s + 0.316·40-s − 0.609·43-s − 0.603·44-s − 1.17·46-s − 1.75·47-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.026411959\)
\(L(\frac12)\) \(\approx\) \(1.026411959\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.28993897294991, −16.04263550250978, −15.33754606729125, −15.04738475060442, −14.27197356621564, −13.48716178919939, −13.01194329839553, −12.17835000536460, −11.89453166528835, −11.03739139641071, −10.78804382853390, −9.907243586677620, −9.606504628214356, −8.547787014779639, −8.180617064320379, −7.747167180777181, −6.990154917484951, −6.487682379506930, −5.344497141337892, −5.062487669256276, −3.983665932993890, −3.145383490602325, −2.698880476727741, −1.416418044236686, −0.5526345736666898, 0.5526345736666898, 1.416418044236686, 2.698880476727741, 3.145383490602325, 3.983665932993890, 5.062487669256276, 5.344497141337892, 6.487682379506930, 6.990154917484951, 7.747167180777181, 8.180617064320379, 8.547787014779639, 9.606504628214356, 9.907243586677620, 10.78804382853390, 11.03739139641071, 11.89453166528835, 12.17835000536460, 13.01194329839553, 13.48716178919939, 14.27197356621564, 15.04738475060442, 15.33754606729125, 16.04263550250978, 16.28993897294991

Graph of the $Z$-function along the critical line