L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 4·11-s + 12-s − 2·13-s + 14-s − 15-s + 16-s − 2·17-s + 18-s − 4·19-s − 20-s + 21-s + 4·22-s + 24-s + 25-s − 2·26-s + 27-s + 28-s − 2·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s + 0.288·12-s − 0.554·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.917·19-s − 0.223·20-s + 0.218·21-s + 0.852·22-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s − 0.371·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 111090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 111090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 3 | \( 1 - T \) | |
| 5 | \( 1 + T \) | |
| 7 | \( 1 - T \) | |
| 23 | \( 1 \) | |
good | 11 | \( 1 - 4 T + p T^{2} \) | 1.11.ae |
| 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c |
| 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c |
| 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e |
| 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c |
| 31 | \( 1 + p T^{2} \) | 1.31.a |
| 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g |
| 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae |
| 47 | \( 1 + p T^{2} \) | 1.47.a |
| 53 | \( 1 - 10 T + p T^{2} \) | 1.53.ak |
| 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am |
| 61 | \( 1 + 14 T + p T^{2} \) | 1.61.o |
| 67 | \( 1 - 12 T + p T^{2} \) | 1.67.am |
| 71 | \( 1 + 8 T + p T^{2} \) | 1.71.i |
| 73 | \( 1 - 10 T + p T^{2} \) | 1.73.ak |
| 79 | \( 1 + 16 T + p T^{2} \) | 1.79.q |
| 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am |
| 89 | \( 1 + 10 T + p T^{2} \) | 1.89.k |
| 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.96546928438187, −13.43308012463511, −12.99455584705609, −12.38258156258373, −12.03282273655306, −11.60138596511064, −11.08010447869258, −10.52477898650970, −10.08682257561701, −9.328954420757641, −8.944098948693347, −8.427270919976463, −7.957158722914284, −7.288714819344041, −6.815816773440610, −6.548114685917530, −5.703044239443452, −5.170777988388811, −4.529050301383056, −4.019680429347538, −3.757751591470317, −2.977820592628674, −2.314774338756836, −1.803879633211711, −1.081227839045979, 0,
1.081227839045979, 1.803879633211711, 2.314774338756836, 2.977820592628674, 3.757751591470317, 4.019680429347538, 4.529050301383056, 5.170777988388811, 5.703044239443452, 6.548114685917530, 6.815816773440610, 7.288714819344041, 7.957158722914284, 8.427270919976463, 8.944098948693347, 9.328954420757641, 10.08682257561701, 10.52477898650970, 11.08010447869258, 11.60138596511064, 12.03282273655306, 12.38258156258373, 12.99455584705609, 13.43308012463511, 13.96546928438187