Properties

Label 2-1106-1.1-c1-0-36
Degree $2$
Conductor $1106$
Sign $-1$
Analytic cond. $8.83145$
Root an. cond. $2.97177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 7-s + 8-s − 3·9-s − 2·10-s − 4·11-s − 2·13-s + 14-s + 16-s + 2·17-s − 3·18-s − 4·19-s − 2·20-s − 4·22-s − 25-s − 2·26-s + 28-s − 6·29-s + 32-s + 2·34-s − 2·35-s − 3·36-s − 6·37-s − 4·38-s − 2·40-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.377·7-s + 0.353·8-s − 9-s − 0.632·10-s − 1.20·11-s − 0.554·13-s + 0.267·14-s + 1/4·16-s + 0.485·17-s − 0.707·18-s − 0.917·19-s − 0.447·20-s − 0.852·22-s − 1/5·25-s − 0.392·26-s + 0.188·28-s − 1.11·29-s + 0.176·32-s + 0.342·34-s − 0.338·35-s − 1/2·36-s − 0.986·37-s − 0.648·38-s − 0.316·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1106\)    =    \(2 \cdot 7 \cdot 79\)
Sign: $-1$
Analytic conductor: \(8.83145\)
Root analytic conductor: \(2.97177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1106,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 - T \)
79 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.443511495069253015977599687403, −8.243652201107820206424774957135, −7.88361489297860101098679345997, −6.96896340283507601308979022106, −5.76268875084749510894360042644, −5.14917934793066143835530572952, −4.15785893596527821113679099960, −3.17432866378691893362933092869, −2.18911649830885718412641508923, 0, 2.18911649830885718412641508923, 3.17432866378691893362933092869, 4.15785893596527821113679099960, 5.14917934793066143835530572952, 5.76268875084749510894360042644, 6.96896340283507601308979022106, 7.88361489297860101098679345997, 8.243652201107820206424774957135, 9.443511495069253015977599687403

Graph of the $Z$-function along the critical line