Properties

Label 2-109005-1.1-c1-0-9
Degree $2$
Conductor $109005$
Sign $1$
Analytic cond. $870.409$
Root an. cond. $29.5026$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 5-s + 2·7-s + 9-s + 5·11-s − 2·12-s − 15-s + 4·16-s + 5·17-s + 6·19-s + 2·20-s + 2·21-s − 9·23-s + 25-s + 27-s − 4·28-s + 8·29-s + 5·31-s + 5·33-s − 2·35-s − 2·36-s − 8·37-s + 7·41-s − 43-s − 10·44-s − 45-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 1.50·11-s − 0.577·12-s − 0.258·15-s + 16-s + 1.21·17-s + 1.37·19-s + 0.447·20-s + 0.436·21-s − 1.87·23-s + 1/5·25-s + 0.192·27-s − 0.755·28-s + 1.48·29-s + 0.898·31-s + 0.870·33-s − 0.338·35-s − 1/3·36-s − 1.31·37-s + 1.09·41-s − 0.152·43-s − 1.50·44-s − 0.149·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 109005 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 109005 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(109005\)    =    \(3 \cdot 5 \cdot 13^{2} \cdot 43\)
Sign: $1$
Analytic conductor: \(870.409\)
Root analytic conductor: \(29.5026\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 109005,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.606723761\)
\(L(\frac12)\) \(\approx\) \(3.606723761\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
43 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68804459468213, −13.58888113792933, −12.43874686706203, −12.18664362647693, −11.92665995629581, −11.44965345216368, −10.51056955784608, −10.13976414999938, −9.720559616309617, −9.096338350055355, −8.803645138526821, −8.169868003230988, −7.755371698439830, −7.519607286253587, −6.585313787193369, −6.100439864384500, −5.412075895609853, −4.862200648257398, −4.309704941363869, −3.868277248859232, −3.397470169211885, −2.785074046841905, −1.734963589720550, −1.205298725133032, −0.6654712915163429, 0.6654712915163429, 1.205298725133032, 1.734963589720550, 2.785074046841905, 3.397470169211885, 3.868277248859232, 4.309704941363869, 4.862200648257398, 5.412075895609853, 6.100439864384500, 6.585313787193369, 7.519607286253587, 7.755371698439830, 8.169868003230988, 8.803645138526821, 9.096338350055355, 9.720559616309617, 10.13976414999938, 10.51056955784608, 11.44965345216368, 11.92665995629581, 12.18664362647693, 12.43874686706203, 13.58888113792933, 13.68804459468213

Graph of the $Z$-function along the critical line