Properties

Label 2-10890-1.1-c1-0-24
Degree $2$
Conductor $10890$
Sign $1$
Analytic cond. $86.9570$
Root an. cond. $9.32507$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 4·7-s − 8-s − 10-s − 2·13-s − 4·14-s + 16-s + 6·17-s + 4·19-s + 20-s + 25-s + 2·26-s + 4·28-s − 6·29-s + 8·31-s − 32-s − 6·34-s + 4·35-s + 2·37-s − 4·38-s − 40-s − 6·41-s + 4·43-s + 9·49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 1.51·7-s − 0.353·8-s − 0.316·10-s − 0.554·13-s − 1.06·14-s + 1/4·16-s + 1.45·17-s + 0.917·19-s + 0.223·20-s + 1/5·25-s + 0.392·26-s + 0.755·28-s − 1.11·29-s + 1.43·31-s − 0.176·32-s − 1.02·34-s + 0.676·35-s + 0.328·37-s − 0.648·38-s − 0.158·40-s − 0.937·41-s + 0.609·43-s + 9/7·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10890 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10890 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10890\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(86.9570\)
Root analytic conductor: \(9.32507\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10890,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.333997183\)
\(L(\frac12)\) \(\approx\) \(2.333997183\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.69034153336038, −16.12411205350818, −15.24174808221486, −14.90592613662044, −14.19200640944340, −13.94991512828057, −13.05122282598828, −12.29303208078547, −11.65614098761563, −11.45569267426119, −10.55440214701818, −10.03011761755423, −9.600371326177063, −8.765418172148747, −8.228646632892931, −7.571067501960620, −7.282001995403109, −6.250542754906307, −5.441726033680890, −5.122083261442397, −4.182674130816111, −3.184297288240087, −2.348790039617709, −1.538129754228387, −0.8644374413898091, 0.8644374413898091, 1.538129754228387, 2.348790039617709, 3.184297288240087, 4.182674130816111, 5.122083261442397, 5.441726033680890, 6.250542754906307, 7.282001995403109, 7.571067501960620, 8.228646632892931, 8.765418172148747, 9.600371326177063, 10.03011761755423, 10.55440214701818, 11.45569267426119, 11.65614098761563, 12.29303208078547, 13.05122282598828, 13.94991512828057, 14.19200640944340, 14.90592613662044, 15.24174808221486, 16.12411205350818, 16.69034153336038

Graph of the $Z$-function along the critical line