Properties

Label 2-107648-1.1-c1-0-2
Degree $2$
Conductor $107648$
Sign $-1$
Analytic cond. $859.573$
Root an. cond. $29.3184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s − 4·7-s + 9-s − 6·11-s − 6·13-s − 4·15-s − 6·17-s − 2·19-s + 8·21-s + 4·23-s − 25-s + 4·27-s − 4·31-s + 12·33-s − 8·35-s − 10·37-s + 12·39-s − 10·41-s + 2·43-s + 2·45-s − 4·47-s + 9·49-s + 12·51-s + 2·53-s − 12·55-s + 4·57-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s − 1.80·11-s − 1.66·13-s − 1.03·15-s − 1.45·17-s − 0.458·19-s + 1.74·21-s + 0.834·23-s − 1/5·25-s + 0.769·27-s − 0.718·31-s + 2.08·33-s − 1.35·35-s − 1.64·37-s + 1.92·39-s − 1.56·41-s + 0.304·43-s + 0.298·45-s − 0.583·47-s + 9/7·49-s + 1.68·51-s + 0.274·53-s − 1.61·55-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 107648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 107648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(107648\)    =    \(2^{7} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(859.573\)
Root analytic conductor: \(29.3184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 107648,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
29 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.61386348335062, −13.34489880797313, −12.95322868916883, −12.44411390328028, −12.17481891290921, −11.47766202973168, −10.77374283435174, −10.49307603681975, −10.14187555450340, −9.700357626472621, −8.971792079821882, −8.787138145615456, −7.723495119386206, −7.274361184268632, −6.745554716731963, −6.331388888918403, −5.840392122848820, −5.253748427330277, −4.939271654071723, −4.456633738650668, −3.278207672791350, −2.924546541719043, −2.274473617625441, −1.756462731374444, −0.3011351592497334, 0, 0.3011351592497334, 1.756462731374444, 2.274473617625441, 2.924546541719043, 3.278207672791350, 4.456633738650668, 4.939271654071723, 5.253748427330277, 5.840392122848820, 6.331388888918403, 6.745554716731963, 7.274361184268632, 7.723495119386206, 8.787138145615456, 8.971792079821882, 9.700357626472621, 10.14187555450340, 10.49307603681975, 10.77374283435174, 11.47766202973168, 12.17481891290921, 12.44411390328028, 12.95322868916883, 13.34489880797313, 13.61386348335062

Graph of the $Z$-function along the critical line