Properties

Label 2-106560-1.1-c1-0-122
Degree $2$
Conductor $106560$
Sign $-1$
Analytic cond. $850.885$
Root an. cond. $29.1699$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·11-s + 2·13-s − 6·17-s − 2·19-s + 25-s + 6·29-s − 2·31-s + 37-s − 8·41-s − 6·43-s − 12·47-s − 7·49-s + 4·55-s + 12·59-s − 10·61-s + 2·65-s + 4·67-s − 4·71-s + 6·73-s − 10·79-s − 6·85-s − 10·89-s − 2·95-s + 6·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.20·11-s + 0.554·13-s − 1.45·17-s − 0.458·19-s + 1/5·25-s + 1.11·29-s − 0.359·31-s + 0.164·37-s − 1.24·41-s − 0.914·43-s − 1.75·47-s − 49-s + 0.539·55-s + 1.56·59-s − 1.28·61-s + 0.248·65-s + 0.488·67-s − 0.474·71-s + 0.702·73-s − 1.12·79-s − 0.650·85-s − 1.05·89-s − 0.205·95-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106560\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(850.885\)
Root analytic conductor: \(29.1699\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.00149955790978, −13.27520576067710, −13.17073931232546, −12.53376781590493, −11.90158534758570, −11.41599705415810, −11.16011891848520, −10.49570288243358, −9.898407277085620, −9.615923158756745, −8.860184931258860, −8.521812222265788, −8.268407377130150, −7.208767971869398, −6.845449794692886, −6.277286472133995, −6.143471652364540, −5.180057464184555, −4.653562405945945, −4.249177711872579, −3.444584152194446, −3.074191470195749, −2.011372205329220, −1.786295151226958, −0.9421184780929796, 0, 0.9421184780929796, 1.786295151226958, 2.011372205329220, 3.074191470195749, 3.444584152194446, 4.249177711872579, 4.653562405945945, 5.180057464184555, 6.143471652364540, 6.277286472133995, 6.845449794692886, 7.208767971869398, 8.268407377130150, 8.521812222265788, 8.860184931258860, 9.615923158756745, 9.898407277085620, 10.49570288243358, 11.16011891848520, 11.41599705415810, 11.90158534758570, 12.53376781590493, 13.17073931232546, 13.27520576067710, 14.00149955790978

Graph of the $Z$-function along the critical line