Properties

Label 2-106470-1.1-c1-0-60
Degree $2$
Conductor $106470$
Sign $1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 7-s − 8-s − 10-s − 3·11-s − 14-s + 16-s + 4·17-s + 7·19-s + 20-s + 3·22-s + 2·23-s + 25-s + 28-s + 2·29-s − 5·31-s − 32-s − 4·34-s + 35-s + 4·37-s − 7·38-s − 40-s + 9·41-s + 12·43-s − 3·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s − 0.904·11-s − 0.267·14-s + 1/4·16-s + 0.970·17-s + 1.60·19-s + 0.223·20-s + 0.639·22-s + 0.417·23-s + 1/5·25-s + 0.188·28-s + 0.371·29-s − 0.898·31-s − 0.176·32-s − 0.685·34-s + 0.169·35-s + 0.657·37-s − 1.13·38-s − 0.158·40-s + 1.40·41-s + 1.82·43-s − 0.452·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.613357335\)
\(L(\frac12)\) \(\approx\) \(2.613357335\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93436158596107, −13.00636412550684, −12.72869709486249, −12.28003136081317, −11.52489568994246, −11.24966657659415, −10.62773265964163, −10.30182964311356, −9.655265250640903, −9.292967412060374, −8.917035481390023, −8.058482336663271, −7.694912592392843, −7.448422251435735, −6.798301747635142, −5.942204210066698, −5.651608473163983, −5.183195057525685, −4.503036683182503, −3.732388452770448, −2.960624648131218, −2.645666132586891, −1.866091937825553, −1.091170601633821, −0.6559015515116423, 0.6559015515116423, 1.091170601633821, 1.866091937825553, 2.645666132586891, 2.960624648131218, 3.732388452770448, 4.503036683182503, 5.183195057525685, 5.651608473163983, 5.942204210066698, 6.798301747635142, 7.448422251435735, 7.694912592392843, 8.058482336663271, 8.917035481390023, 9.292967412060374, 9.655265250640903, 10.30182964311356, 10.62773265964163, 11.24966657659415, 11.52489568994246, 12.28003136081317, 12.72869709486249, 13.00636412550684, 13.93436158596107

Graph of the $Z$-function along the critical line