Properties

Label 2-10640-1.1-c1-0-2
Degree $2$
Conductor $10640$
Sign $1$
Analytic cond. $84.9608$
Root an. cond. $9.21741$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 3·9-s + 4·11-s − 6·13-s + 6·17-s + 19-s + 25-s − 6·29-s − 8·31-s + 35-s − 6·37-s − 6·41-s + 3·45-s + 49-s + 10·53-s − 4·55-s + 12·59-s + 2·61-s + 3·63-s + 6·65-s − 4·67-s − 12·71-s + 6·73-s − 4·77-s + 12·79-s + 9·81-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 9-s + 1.20·11-s − 1.66·13-s + 1.45·17-s + 0.229·19-s + 1/5·25-s − 1.11·29-s − 1.43·31-s + 0.169·35-s − 0.986·37-s − 0.937·41-s + 0.447·45-s + 1/7·49-s + 1.37·53-s − 0.539·55-s + 1.56·59-s + 0.256·61-s + 0.377·63-s + 0.744·65-s − 0.488·67-s − 1.42·71-s + 0.702·73-s − 0.455·77-s + 1.35·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10640\)    =    \(2^{4} \cdot 5 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(84.9608\)
Root analytic conductor: \(9.21741\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.106606805\)
\(L(\frac12)\) \(\approx\) \(1.106606805\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.53306145157929, −16.30110070741927, −15.12190183277206, −14.78835987426163, −14.45452755128696, −13.84182341112852, −13.03272442962525, −12.31116296727782, −11.90145421610385, −11.61105892713578, −10.71779048909976, −10.04471504147951, −9.454442861734532, −8.956540813645537, −8.263090538759296, −7.368601628524886, −7.184868437880819, −6.257643959522296, −5.407093711593101, −5.129900244395653, −3.873596423915060, −3.524063185210880, −2.660779735230786, −1.718949178390209, −0.4803609141533560, 0.4803609141533560, 1.718949178390209, 2.660779735230786, 3.524063185210880, 3.873596423915060, 5.129900244395653, 5.407093711593101, 6.257643959522296, 7.184868437880819, 7.368601628524886, 8.263090538759296, 8.956540813645537, 9.454442861734532, 10.04471504147951, 10.71779048909976, 11.61105892713578, 11.90145421610385, 12.31116296727782, 13.03272442962525, 13.84182341112852, 14.45452755128696, 14.78835987426163, 15.12190183277206, 16.30110070741927, 16.53306145157929

Graph of the $Z$-function along the critical line