Properties

Label 2-10640-1.1-c1-0-15
Degree $2$
Conductor $10640$
Sign $-1$
Analytic cond. $84.9608$
Root an. cond. $9.21741$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 3·9-s − 4·11-s + 2·13-s − 2·17-s + 19-s + 25-s + 10·29-s + 8·31-s + 35-s − 6·37-s + 10·41-s − 8·43-s + 3·45-s + 49-s + 10·53-s + 4·55-s − 4·59-s + 2·61-s + 3·63-s − 2·65-s + 12·67-s − 4·71-s − 2·73-s + 4·77-s − 12·79-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 9-s − 1.20·11-s + 0.554·13-s − 0.485·17-s + 0.229·19-s + 1/5·25-s + 1.85·29-s + 1.43·31-s + 0.169·35-s − 0.986·37-s + 1.56·41-s − 1.21·43-s + 0.447·45-s + 1/7·49-s + 1.37·53-s + 0.539·55-s − 0.520·59-s + 0.256·61-s + 0.377·63-s − 0.248·65-s + 1.46·67-s − 0.474·71-s − 0.234·73-s + 0.455·77-s − 1.35·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10640\)    =    \(2^{4} \cdot 5 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(84.9608\)
Root analytic conductor: \(9.21741\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10640,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.90718671010724, −15.99367651499095, −15.74741583299089, −15.40138218943991, −14.40773239827050, −14.03425946078190, −13.36465691426381, −12.90453655709314, −12.12887363598725, −11.64661709078857, −11.08952524895211, −10.30556514241439, −10.07805991587164, −8.958980361113875, −8.512483547058005, −8.076473442803076, −7.292014379059171, −6.533457476263253, −5.974833162773394, −5.193982685300184, −4.597149460386197, −3.683282136436096, −2.864998603185397, −2.471483338622767, −0.9997946324539813, 0, 0.9997946324539813, 2.471483338622767, 2.864998603185397, 3.683282136436096, 4.597149460386197, 5.193982685300184, 5.974833162773394, 6.533457476263253, 7.292014379059171, 8.076473442803076, 8.512483547058005, 8.958980361113875, 10.07805991587164, 10.30556514241439, 11.08952524895211, 11.64661709078857, 12.12887363598725, 12.90453655709314, 13.36465691426381, 14.03425946078190, 14.40773239827050, 15.40138218943991, 15.74741583299089, 15.99367651499095, 16.90718671010724

Graph of the $Z$-function along the critical line