Properties

Label 2-1056-1.1-c1-0-16
Degree $2$
Conductor $1056$
Sign $-1$
Analytic cond. $8.43220$
Root an. cond. $2.90382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s − 11-s + 4·13-s − 2·17-s + 2·21-s − 2·23-s − 5·25-s − 27-s − 2·29-s − 4·31-s + 33-s + 6·37-s − 4·39-s − 6·41-s − 12·43-s − 6·47-s − 3·49-s + 2·51-s − 2·63-s + 4·67-s + 2·69-s − 10·71-s + 2·73-s + 5·75-s + 2·77-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.301·11-s + 1.10·13-s − 0.485·17-s + 0.436·21-s − 0.417·23-s − 25-s − 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.174·33-s + 0.986·37-s − 0.640·39-s − 0.937·41-s − 1.82·43-s − 0.875·47-s − 3/7·49-s + 0.280·51-s − 0.251·63-s + 0.488·67-s + 0.240·69-s − 1.18·71-s + 0.234·73-s + 0.577·75-s + 0.227·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1056\)    =    \(2^{5} \cdot 3 \cdot 11\)
Sign: $-1$
Analytic conductor: \(8.43220\)
Root analytic conductor: \(2.90382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.666664088585156836283870727400, −8.681228579284147789330769571895, −7.83184717123112089584609849816, −6.74842315612283598511124565736, −6.14928074186860196504069806728, −5.30108045271866710515332133457, −4.13249421192368957449183926090, −3.23862454287983130235067970596, −1.73357944322210682257057816907, 0, 1.73357944322210682257057816907, 3.23862454287983130235067970596, 4.13249421192368957449183926090, 5.30108045271866710515332133457, 6.14928074186860196504069806728, 6.74842315612283598511124565736, 7.83184717123112089584609849816, 8.681228579284147789330769571895, 9.666664088585156836283870727400

Graph of the $Z$-function along the critical line