Properties

Label 2-322e2-1.1-c1-0-9
Degree $2$
Conductor $103684$
Sign $1$
Analytic cond. $827.920$
Root an. cond. $28.7736$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·9-s + 13-s − 6·17-s + 2·19-s − 5·25-s + 5·27-s − 3·29-s − 5·31-s − 8·37-s − 39-s − 3·41-s − 8·43-s − 9·47-s + 6·51-s − 6·53-s − 2·57-s + 12·59-s + 14·61-s − 8·67-s − 15·71-s + 7·73-s + 5·75-s + 10·79-s + 81-s + 6·83-s + 3·87-s + ⋯
L(s)  = 1  − 0.577·3-s − 2/3·9-s + 0.277·13-s − 1.45·17-s + 0.458·19-s − 25-s + 0.962·27-s − 0.557·29-s − 0.898·31-s − 1.31·37-s − 0.160·39-s − 0.468·41-s − 1.21·43-s − 1.31·47-s + 0.840·51-s − 0.824·53-s − 0.264·57-s + 1.56·59-s + 1.79·61-s − 0.977·67-s − 1.78·71-s + 0.819·73-s + 0.577·75-s + 1.12·79-s + 1/9·81-s + 0.658·83-s + 0.321·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103684 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103684\)    =    \(2^{2} \cdot 7^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(827.920\)
Root analytic conductor: \(28.7736\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 103684,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23656066025336, −13.47810819528522, −13.38062464451379, −12.79616784273491, −12.07856047416734, −11.71351987882201, −11.28320681709904, −10.95740627072402, −10.33739907886347, −9.822543866150198, −9.268094320371294, −8.651237223386447, −8.412526353902126, −7.711742765997715, −7.045572756666276, −6.616882315224604, −6.153527214001959, −5.479551913763260, −5.132428712748030, −4.579907319679305, −3.661058833562488, −3.487659584329297, −2.505352484240448, −1.968260438114341, −1.261837868915541, 0, 0, 1.261837868915541, 1.968260438114341, 2.505352484240448, 3.487659584329297, 3.661058833562488, 4.579907319679305, 5.132428712748030, 5.479551913763260, 6.153527214001959, 6.616882315224604, 7.045572756666276, 7.711742765997715, 8.412526353902126, 8.651237223386447, 9.268094320371294, 9.822543866150198, 10.33739907886347, 10.95740627072402, 11.28320681709904, 11.71351987882201, 12.07856047416734, 12.79616784273491, 13.38062464451379, 13.47810819528522, 14.23656066025336

Graph of the $Z$-function along the critical line