Properties

Label 2-102850-1.1-c1-0-62
Degree $2$
Conductor $102850$
Sign $-1$
Analytic cond. $821.261$
Root an. cond. $28.6576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 2·7-s − 8-s + 9-s + 2·12-s − 6·13-s + 2·14-s + 16-s + 17-s − 18-s + 8·19-s − 4·21-s + 2·23-s − 2·24-s + 6·26-s − 4·27-s − 2·28-s − 6·29-s − 2·31-s − 32-s − 34-s + 36-s − 6·37-s − 8·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.577·12-s − 1.66·13-s + 0.534·14-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 1.83·19-s − 0.872·21-s + 0.417·23-s − 0.408·24-s + 1.17·26-s − 0.769·27-s − 0.377·28-s − 1.11·29-s − 0.359·31-s − 0.176·32-s − 0.171·34-s + 1/6·36-s − 0.986·37-s − 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(102850\)    =    \(2 \cdot 5^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(821.261\)
Root analytic conductor: \(28.6576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 102850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.03928967427852, −13.49190150328114, −13.10154805749295, −12.48396415577272, −11.93608989597843, −11.65860180195686, −10.92499985950922, −10.29649653809974, −9.708754195534198, −9.530177320909158, −9.225130785342782, −8.517774526873698, −7.995888144044222, −7.561237132851788, −7.055133423691255, −6.798480208158294, −5.821938217079988, −5.273980224404798, −4.882316398342087, −3.655432892656869, −3.499341280017172, −2.886437298833928, −2.291216318165431, −1.799157822399621, −0.8047622861649161, 0, 0.8047622861649161, 1.799157822399621, 2.291216318165431, 2.886437298833928, 3.499341280017172, 3.655432892656869, 4.882316398342087, 5.273980224404798, 5.821938217079988, 6.798480208158294, 7.055133423691255, 7.561237132851788, 7.995888144044222, 8.517774526873698, 9.225130785342782, 9.530177320909158, 9.708754195534198, 10.29649653809974, 10.92499985950922, 11.65860180195686, 11.93608989597843, 12.48396415577272, 13.10154805749295, 13.49190150328114, 14.03928967427852

Graph of the $Z$-function along the critical line