L(s) = 1 | − 2-s − 3-s − 4-s + 6-s + 3·8-s + 9-s + 12-s − 16-s − 18-s + 4·19-s − 3·24-s − 2·25-s − 27-s + 8·29-s − 5·32-s − 36-s − 4·38-s + 4·41-s + 8·43-s + 48-s − 14·49-s + 2·50-s + 16·53-s + 54-s − 4·57-s − 8·58-s − 8·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.288·12-s − 1/4·16-s − 0.235·18-s + 0.917·19-s − 0.612·24-s − 2/5·25-s − 0.192·27-s + 1.48·29-s − 0.883·32-s − 1/6·36-s − 0.648·38-s + 0.624·41-s + 1.21·43-s + 0.144·48-s − 2·49-s + 0.282·50-s + 2.19·53-s + 0.136·54-s − 0.529·57-s − 1.05·58-s − 1.02·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8812240216\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8812240216\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.446506929753249545177900870577, −7.974343655440478531711444894748, −7.51807052948735244360197008663, −7.19139755277043271422456892253, −6.65114644039420565670907404565, −6.08028370479278811397695239367, −5.66472679810901525759857455071, −5.11663810477219539052022762572, −4.66406356614351487976824993967, −4.24725165718132712064708129082, −3.62478510158769429706429958280, −2.96508949926411653841300894251, −2.16241729124266777505565848848, −1.29162763419450906864019887941, −0.63239715124165236793703764842,
0.63239715124165236793703764842, 1.29162763419450906864019887941, 2.16241729124266777505565848848, 2.96508949926411653841300894251, 3.62478510158769429706429958280, 4.24725165718132712064708129082, 4.66406356614351487976824993967, 5.11663810477219539052022762572, 5.66472679810901525759857455071, 6.08028370479278811397695239367, 6.65114644039420565670907404565, 7.19139755277043271422456892253, 7.51807052948735244360197008663, 7.974343655440478531711444894748, 8.446506929753249545177900870577