L(s) = 1 | − 2-s + 3-s − 4-s − 6-s + 4·7-s + 3·8-s + 9-s − 12-s − 4·14-s − 16-s − 18-s − 4·19-s + 4·21-s + 3·24-s − 10·25-s + 27-s − 4·28-s − 8·29-s − 5·32-s − 36-s + 4·38-s − 8·41-s − 4·42-s − 8·43-s − 48-s + 2·49-s + 10·50-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s + 1.51·7-s + 1.06·8-s + 1/3·9-s − 0.288·12-s − 1.06·14-s − 1/4·16-s − 0.235·18-s − 0.917·19-s + 0.872·21-s + 0.612·24-s − 2·25-s + 0.192·27-s − 0.755·28-s − 1.48·29-s − 0.883·32-s − 1/6·36-s + 0.648·38-s − 1.24·41-s − 0.617·42-s − 1.21·43-s − 0.144·48-s + 2/7·49-s + 1.41·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.193695355455962012461491792334, −7.897179848666337609198487573404, −7.56411870664652821582677747215, −6.97230499077490902226536338024, −6.55119130341689932145439434740, −5.71969138736606233742216533202, −5.27555252851420954848695452535, −4.96465004741004469032539347110, −4.21410916106122281136368301439, −3.95018849599060273532505664097, −3.44397170827507297731826938859, −2.24135760861622127054082439094, −1.94961424928317279852299617913, −1.32639999422257296683032682274, 0,
1.32639999422257296683032682274, 1.94961424928317279852299617913, 2.24135760861622127054082439094, 3.44397170827507297731826938859, 3.95018849599060273532505664097, 4.21410916106122281136368301439, 4.96465004741004469032539347110, 5.27555252851420954848695452535, 5.71969138736606233742216533202, 6.55119130341689932145439434740, 6.97230499077490902226536338024, 7.56411870664652821582677747215, 7.897179848666337609198487573404, 8.193695355455962012461491792334