L(s) = 1 | − 2-s + 4-s + 5-s − 8-s + 9-s − 10-s + 4·13-s + 16-s − 18-s + 20-s + 25-s − 4·26-s + 4·31-s − 32-s + 36-s − 8·37-s − 40-s + 16·41-s − 12·43-s + 45-s − 2·49-s − 50-s + 4·52-s + 8·53-s − 4·62-s + 64-s + 4·65-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.10·13-s + 1/4·16-s − 0.235·18-s + 0.223·20-s + 1/5·25-s − 0.784·26-s + 0.718·31-s − 0.176·32-s + 1/6·36-s − 1.31·37-s − 0.158·40-s + 2.49·41-s − 1.82·43-s + 0.149·45-s − 2/7·49-s − 0.141·50-s + 0.554·52-s + 1.09·53-s − 0.508·62-s + 1/8·64-s + 0.496·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.381692069\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.381692069\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.239017929550746735404791574089, −8.910091893541353432384639325958, −8.325019523634666183898891526733, −8.061063584539329861794145068359, −7.37114174944569447305046653449, −6.85809946022651850771745167896, −6.44086511283195212789530640624, −5.92907236132639256710655793569, −5.38165915968840011544461761118, −4.74446027620911328840173259317, −3.96007708504890879416393608699, −3.42217104958819547032166109942, −2.58654312151044494480774162871, −1.82377880686306950663111542047, −0.955895064069410118445920385164,
0.955895064069410118445920385164, 1.82377880686306950663111542047, 2.58654312151044494480774162871, 3.42217104958819547032166109942, 3.96007708504890879416393608699, 4.74446027620911328840173259317, 5.38165915968840011544461761118, 5.92907236132639256710655793569, 6.44086511283195212789530640624, 6.85809946022651850771745167896, 7.37114174944569447305046653449, 8.061063584539329861794145068359, 8.325019523634666183898891526733, 8.910091893541353432384639325958, 9.239017929550746735404791574089