Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 74 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.357882943894$, $\pm0.642117056106$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{11})\) |
Galois group: | $C_2^2$ |
Jacobians: | $226$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3556$ | $12645136$ | $42180166084$ | $146866476847104$ | $511116752950147876$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3630$ | $205380$ | $12120334$ | $714924300$ | $42179798526$ | $2488651484820$ | $146830481657374$ | $8662995818654940$ | $511116752599654350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 226 curves (of which all are hyperelliptic):
- $y^2=50 x^6+2 x^5+46 x^4+19 x^3+32 x^2+39 x+19$
- $y^2=35 x^6+50 x^5+47 x^4+34 x^3+56 x^2+47 x+51$
- $y^2=11 x^6+41 x^5+35 x^4+9 x^3+53 x^2+35 x+43$
- $y^2=22 x^6+31 x^4+14 x^3+11 x^2+4 x+38$
- $y^2=44 x^6+3 x^4+28 x^3+22 x^2+8 x+17$
- $y^2=5 x^6+31 x^5+11 x^4+42 x^3+25 x^2+47 x+11$
- $y^2=16 x^6+49 x^5+x^4+52 x^3+6 x^2+15 x+33$
- $y^2=32 x^6+39 x^5+2 x^4+45 x^3+12 x^2+30 x+7$
- $y^2=20 x^6+46 x^5+33 x^4+18 x^3+50 x^2+50 x+13$
- $y^2=49 x^6+33 x^5+8 x^4+3 x^3+11 x^2+3 x+40$
- $y^2=39 x^6+7 x^5+16 x^4+6 x^3+22 x^2+6 x+21$
- $y^2=47 x^6+54 x^5+49 x^4+49 x^3+32 x^2+55 x+26$
- $y^2=26 x^6+31 x^5+24 x^4+6 x^3+28 x^2+47 x+57$
- $y^2=52 x^6+3 x^5+48 x^4+12 x^3+56 x^2+35 x+55$
- $y^2=9 x^6+47 x^5+45 x^4+30 x^3+49 x^2+52 x+6$
- $y^2=18 x^6+35 x^5+31 x^4+x^3+39 x^2+45 x+12$
- $y^2=34 x^6+44 x^5+30 x^4+35 x^3+15 x^2+18 x+33$
- $y^2=9 x^6+29 x^5+x^4+11 x^3+30 x^2+36 x+7$
- $y^2=51 x^6+12 x^5+9 x^4+33 x^3+34 x^2+21 x+18$
- $y^2=43 x^6+24 x^5+18 x^4+7 x^3+9 x^2+42 x+36$
- and 206 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{11})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.cw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-33}) \)$)$ |
Base change
This is a primitive isogeny class.