Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 13 x^{2} )( 1 + 13 x^{2} )$ |
$1 - 4 x + 26 x^{2} - 52 x^{3} + 169 x^{4}$ | |
Frobenius angles: | $\pm0.312832958189$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $20$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $140$ | $35280$ | $5033420$ | $812851200$ | $137768638700$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $10$ | $206$ | $2290$ | $28462$ | $371050$ | $4827134$ | $62735410$ | $815674078$ | $10604671690$ | $137859917486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=11 x^6+2 x^5+7 x^4+2 x^3+2 x^2+6 x+2$
- $y^2=10 x^6+10 x^5+7 x^4+8 x^3+7 x^2+10 x+10$
- $y^2=5 x^6+9 x^5+12 x^4+3 x^3+11 x^2+3 x+5$
- $y^2=9 x^6+2 x^5+11 x^4+8 x^3+5 x^2+7 x+3$
- $y^2=x^6+7 x^5+x^4+9 x^3+3 x^2+10 x+10$
- $y^2=9 x^5+10 x^4+3 x^3+3 x^2+9 x$
- $y^2=9 x^6+7 x^5+3 x^4+4 x^3+3 x^2+7 x+9$
- $y^2=4 x^6+2 x^5+4 x^4+5 x^3+6 x^2+6 x+12$
- $y^2=6 x^6+12 x^5+11 x^4+6 x^3+11 x^2+12 x+6$
- $y^2=4 x^6+2 x^5+4 x^4+5 x^3+4 x^2+2 x+4$
- $y^2=x^6+8 x^5+9 x^4+11 x^3+5 x^2+5 x+2$
- $y^2=10 x^6+6 x^5+8 x^3+5 x+10$
- $y^2=6 x^6+11 x^5+12 x^4+12 x^2+11 x+6$
- $y^2=6 x^6+4 x^5+8 x^4+4 x^2+3 x+8$
- $y^2=10 x^6+7 x^5+10 x^4+2 x^3+12 x^2+7 x+9$
- $y^2=11 x^6+3 x^5+2 x^4+8 x^3+7 x^2+7 x+11$
- $y^2=4 x^5+7 x^3+9 x+12$
- $y^2=4 x^6+x^5+6 x^4+5 x^3+11 x^2+3 x+9$
- $y^2=8 x^6+5 x^5+10 x^4+5 x^3+10 x^2+5 x+8$
- $y^2=8 x^6+2 x^5+12 x^4+12 x^2+10 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13^{2}}$.
Endomorphism algebra over $\F_{13}$The isogeny class factors as 1.13.ae $\times$ 1.13.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{13^{2}}$ is 1.169.k $\times$ 1.169.ba. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.13.e_ba | $2$ | 2.169.bk_xa |
2.13.ag_ba | $4$ | (not in LMFDB) |
2.13.g_ba | $4$ | (not in LMFDB) |