L(s) = 1 | − 4-s + 3·5-s + 4·7-s + 16-s + 3·17-s − 3·20-s + 4·25-s − 4·28-s + 12·35-s − 4·37-s + 3·41-s + 5·43-s + 3·47-s + 9·49-s − 9·59-s − 64-s + 16·67-s − 3·68-s − 5·79-s + 3·80-s + 3·83-s + 9·85-s − 3·89-s − 4·100-s − 15·101-s + 2·109-s + 4·112-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1.34·5-s + 1.51·7-s + 1/4·16-s + 0.727·17-s − 0.670·20-s + 4/5·25-s − 0.755·28-s + 2.02·35-s − 0.657·37-s + 0.468·41-s + 0.762·43-s + 0.437·47-s + 9/7·49-s − 1.17·59-s − 1/8·64-s + 1.95·67-s − 0.363·68-s − 0.562·79-s + 0.335·80-s + 0.329·83-s + 0.976·85-s − 0.317·89-s − 2/5·100-s − 1.49·101-s + 0.191·109-s + 0.377·112-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.773159893\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.773159893\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.700499801780849871422967939717, −8.185872433937449181373744212163, −7.87526718901971601628891339895, −7.32216384434902412784033120957, −6.84588299918946371685968876469, −6.13339703928880059857534572843, −5.75739321044061657521912351317, −5.30466503180839410864620008210, −4.96691491474515561658927085928, −4.37697657818427220392102837937, −3.83342422335483417429324076111, −3.01087461802906842246889200636, −2.28332519884053315036700805030, −1.70730787434561622793059029794, −1.02391041856488217697902128492,
1.02391041856488217697902128492, 1.70730787434561622793059029794, 2.28332519884053315036700805030, 3.01087461802906842246889200636, 3.83342422335483417429324076111, 4.37697657818427220392102837937, 4.96691491474515561658927085928, 5.30466503180839410864620008210, 5.75739321044061657521912351317, 6.13339703928880059857534572843, 6.84588299918946371685968876469, 7.32216384434902412784033120957, 7.87526718901971601628891339895, 8.185872433937449181373744212163, 8.700499801780849871422967939717