Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + x + 79 x^{2} )( 1 + 4 x + 79 x^{2} )$ |
$1 + 5 x + 162 x^{2} + 395 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.517915787826$, $\pm0.572243955238$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6804$ | $40851216$ | $242536445424$ | $1516335861096000$ | $9468680340163987404$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $85$ | $6541$ | $491920$ | $38930233$ | $3077187775$ | $243088590526$ | $19203896858665$ | $1517108758657873$ | $119851596935278000$ | $9468276083872636981$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=40 x^6+46 x^5+26 x^4+39 x^3+60 x^2+5 x+55$
- $y^2=35 x^6+37 x^5+40 x^4+15 x^3+43 x^2+66 x+1$
- $y^2=5 x^5+75 x^4+62 x^3+31 x^2+44 x+65$
- $y^2=61 x^6+71 x^5+16 x^4+40 x^3+60 x^2+36 x+29$
- $y^2=30 x^6+52 x^5+63 x^4+47 x^3+37 x^2+11 x+51$
- $y^2=41 x^6+64 x^5+63 x^4+75 x^3+58 x^2+22 x+28$
- $y^2=4 x^6+2 x^5+7 x^4+74 x^3+38 x^2+4 x+46$
- $y^2=77 x^5+14 x^4+9 x^3+6 x^2+28 x+45$
- $y^2=19 x^6+60 x^5+7 x^4+38 x^3+49 x^2+35 x+50$
- $y^2=61 x^6+33 x^5+77 x^4+44 x^3+26 x^2+34 x+67$
- $y^2=39 x^6+68 x^5+28 x^4+19 x^3+17 x^2+57 x+53$
- $y^2=74 x^5+67 x^4+71 x^3+62 x^2+73 x+45$
- $y^2=71 x^6+48 x^5+50 x^4+76 x^3+48 x^2+41 x+44$
- $y^2=25 x^6+62 x^5+29 x^4+23 x^3+78 x^2+39 x+46$
- $y^2=45 x^6+2 x^5+36 x^4+53 x^3+62 x^2+40 x+7$
- $y^2=44 x^6+56 x^5+54 x^4+68 x^3+26 x^2+11 x+50$
- $y^2=26 x^6+52 x^5+7 x^4+78 x^3+5 x^2+x+3$
- $y^2=28 x^6+41 x^5+30 x^4+68 x^3+61 x^2+65 x+55$
- $y^2=52 x^6+46 x^5+65 x^4+20 x^3+57 x^2+26 x+71$
- $y^2=20 x^6+9 x^5+18 x^4+52 x^3+18 x^2+43 x+19$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.b $\times$ 1.79.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.