# Stored data for abelian variety isogeny class 2.79.f_gg, downloaded from the LMFDB on 21 October 2025. {"abvar_count": 6804, "abvar_counts": [6804, 40851216, 242536445424, 1516335861096000, 9468680340163987404, 59091786937585072210176, 368789887453436071793225244, 2301619063346265971313514656000, 14364405173758555105447276054015344, 89648251988639077011804256973054259216], "abvar_counts_str": "6804 40851216 242536445424 1516335861096000 9468680340163987404 59091786937585072210176 368789887453436071793225244 2301619063346265971313514656000 14364405173758555105447276054015344 89648251988639077011804256973054259216 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.517915787825951, 0.572243955237905], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 85, "curve_counts": [85, 6541, 491920, 38930233, 3077187775, 243088590526, 19203896858665, 1517108758657873, 119851596935278000, 9468276083872636981], "curve_counts_str": "85 6541 491920 38930233 3077187775 243088590526 19203896858665 1517108758657873 119851596935278000 9468276083872636981 ", "curves": ["y^2=40*x^6+46*x^5+26*x^4+39*x^3+60*x^2+5*x+55", "y^2=35*x^6+37*x^5+40*x^4+15*x^3+43*x^2+66*x+1", "y^2=5*x^5+75*x^4+62*x^3+31*x^2+44*x+65", "y^2=61*x^6+71*x^5+16*x^4+40*x^3+60*x^2+36*x+29", "y^2=30*x^6+52*x^5+63*x^4+47*x^3+37*x^2+11*x+51", "y^2=41*x^6+64*x^5+63*x^4+75*x^3+58*x^2+22*x+28", "y^2=4*x^6+2*x^5+7*x^4+74*x^3+38*x^2+4*x+46", "y^2=77*x^5+14*x^4+9*x^3+6*x^2+28*x+45", "y^2=19*x^6+60*x^5+7*x^4+38*x^3+49*x^2+35*x+50", "y^2=61*x^6+33*x^5+77*x^4+44*x^3+26*x^2+34*x+67", "y^2=39*x^6+68*x^5+28*x^4+19*x^3+17*x^2+57*x+53", "y^2=74*x^5+67*x^4+71*x^3+62*x^2+73*x+45", "y^2=71*x^6+48*x^5+50*x^4+76*x^3+48*x^2+41*x+44", "y^2=25*x^6+62*x^5+29*x^4+23*x^3+78*x^2+39*x+46", "y^2=45*x^6+2*x^5+36*x^4+53*x^3+62*x^2+40*x+7", "y^2=44*x^6+56*x^5+54*x^4+68*x^3+26*x^2+11*x+50", "y^2=26*x^6+52*x^5+7*x^4+78*x^3+5*x^2+x+3", "y^2=28*x^6+41*x^5+30*x^4+68*x^3+61*x^2+65*x+55", "y^2=52*x^6+46*x^5+65*x^4+20*x^3+57*x^2+26*x+71", "y^2=20*x^6+9*x^5+18*x^4+52*x^3+18*x^2+43*x+19", "y^2=22*x^6+10*x^5+17*x^4+4*x^3+43*x^2+76*x+37", "y^2=24*x^6+12*x^5+37*x^4+60*x^3+54*x^2+11*x+42", "y^2=45*x^6+71*x^5+46*x^4+18*x^3+9*x^2+52*x+34", "y^2=64*x^6+71*x^5+35*x^4+x^3+78*x^2+26*x+47", "y^2=24*x^5+23*x^4+13*x^3+7*x^2+68*x+5", "y^2=72*x^6+77*x^5+2*x^4+26*x^3+45*x^2+55*x+16", "y^2=30*x^6+46*x^5+2*x^3+38*x^2+3*x+7", "y^2=54*x^6+21*x^5+76*x^4+38*x^3+72*x^2+45*x+43", "y^2=17*x^6+68*x^5+49*x^4+16*x^3+69*x^2+35*x+58", "y^2=50*x^6+31*x^5+8*x^4+65*x^3+47*x^2+44*x+57", "y^2=62*x^6+30*x^5+58*x^4+29*x^3+65*x^2+51*x+76", "y^2=3*x^6+9*x^5+3*x^4+2*x^3+31*x^2+50*x+43", "y^2=75*x^6+30*x^5+41*x^4+66*x^3+61*x^2+78*x+37", "y^2=55*x^6+61*x^5+18*x^4+22*x^3+8*x^2+78*x+46", "y^2=73*x^6+64*x^5+14*x^4+38*x^3+x^2+49*x+52", "y^2=60*x^6+41*x^5+18*x^4+67*x^3+35*x^2+8*x+15", "y^2=2*x^6+62*x^5+51*x^4+6*x^3+48*x^2+32*x+59", "y^2=27*x^6+68*x^5+46*x^4+72*x^3+28*x^2+65*x+29", "y^2=40*x^6+24*x^5+61*x^4+14*x^3+13*x^2+7*x+50", "y^2=22*x^6+26*x^5+50*x^4+54*x^3+9*x^2+39*x+14", "y^2=69*x^5+47*x^4+42*x^3+31*x^2+49*x+64", "y^2=44*x^6+72*x^5+4*x^4+60*x^3+67*x^2+6*x+61", "y^2=59*x^6+56*x^5+39*x^4+19*x^3+20*x^2+71*x+50", "y^2=5*x^6+8*x^5+22*x^4+6*x^3+4*x^2+74*x+74", "y^2=14*x^6+51*x^5+60*x^4+72*x^3+77*x^2+43*x+32", "y^2=27*x^6+46*x^5+77*x^4+7*x^3+41*x^2+51*x+44", "y^2=72*x^6+49*x^5+37*x^4+66*x^3+56*x^2+71*x+22", "y^2=5*x^6+50*x^5+4*x^4+10*x^3+33*x^2+64*x+72", "y^2=50*x^6+44*x^5+76*x^4+53*x^3+37*x^2+59*x+44", "y^2=10*x^6+12*x^5+64*x^4+26*x^3+74*x^2+69", "y^2=28*x^6+39*x^5+9*x^4+35*x^3+60*x^2+56*x+76", "y^2=19*x^6+77*x^5+63*x^4+72*x^3+52*x^2+36*x+30", "y^2=54*x^6+75*x^5+54*x^4+11*x^3+48*x^2+43*x+11", "y^2=49*x^6+36*x^5+14*x^4+21*x^3+14*x^2+29*x+21", "y^2=53*x^6+47*x^5+10*x^4+54*x^3+63*x^2+40*x+42", "y^2=23*x^6+12*x^5+36*x^4+44*x^3+70*x^2+60*x+48"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 24, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.35.1", "2.0.3.1"], "geometric_splitting_field": "4.0.11025.3", "geometric_splitting_polynomials": [[81, -9, -8, -1, 1]], "group_structure_count": 8, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 56, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 56, "label": "2.79.f_gg", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.35.1", "2.0.3.1"], "p": 79, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 5, 162, 395, 6241], "poly_str": "1 5 162 395 6241 ", "primitive_models": [], "q": 79, "real_poly": [1, 5, 4], "simple_distinct": ["1.79.b", "1.79.e"], "simple_factors": ["1.79.bA", "1.79.eA"], "simple_multiplicities": [1, 1], "singular_primes": ["3,5*F-2", "2,V+1", "5,V-8"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.11025.3", "splitting_polynomials": [[81, -9, -8, -1, 1]], "twist_count": 12, "twists": [["2.79.af_gg", "2.6241.ln_bzlo", 2], ["2.79.ad_fy", "2.6241.ln_bzlo", 2], ["2.79.d_fy", "2.6241.ln_bzlo", 2], ["2.79.aq_fl", "2.493039.abrc_cpzic", 3], ["2.79.o_gp", "2.493039.abrc_cpzic", 3], ["2.79.as_gt", "2.243087455521.cmpaa_dggcewopy", 6], ["2.79.ao_gp", "2.243087455521.cmpaa_dggcewopy", 6], ["2.79.am_fp", "2.243087455521.cmpaa_dggcewopy", 6], ["2.79.m_fp", "2.243087455521.cmpaa_dggcewopy", 6], ["2.79.q_fl", "2.243087455521.cmpaa_dggcewopy", 6], ["2.79.s_gt", "2.243087455521.cmpaa_dggcewopy", 6]], "weak_equivalence_count": 28, "zfv_index": 270, "zfv_index_factorization": [[2, 1], [3, 3], [5, 1]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 94500, "zfv_singular_count": 6, "zfv_singular_primes": ["3,5*F-2", "2,V+1", "5,V-8"]}