| L(s) = 1 | − 3-s + 2·5-s − 2·7-s + 9-s − 2·15-s + 6·17-s + 2·21-s − 6·25-s − 27-s − 4·35-s − 4·37-s − 10·41-s − 4·43-s + 2·45-s − 12·47-s − 3·49-s − 6·51-s − 8·59-s − 2·63-s + 4·67-s + 6·75-s + 12·79-s + 81-s − 4·83-s + 12·85-s − 2·89-s − 22·101-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.894·5-s − 0.755·7-s + 1/3·9-s − 0.516·15-s + 1.45·17-s + 0.436·21-s − 6/5·25-s − 0.192·27-s − 0.676·35-s − 0.657·37-s − 1.56·41-s − 0.609·43-s + 0.298·45-s − 1.75·47-s − 3/7·49-s − 0.840·51-s − 1.04·59-s − 0.251·63-s + 0.488·67-s + 0.692·75-s + 1.35·79-s + 1/9·81-s − 0.439·83-s + 1.30·85-s − 0.211·89-s − 2.18·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.394198173691313675274678569583, −8.101799801217331695896631501934, −7.60947383493433245341346620710, −6.90680275705825059714993956526, −6.63943032838070153707090868671, −6.06268117574169472565081211288, −5.78278146656308043215275589783, −5.14315867430249819520966908961, −4.91701865173131690987279015407, −3.93457430501747981709783061947, −3.45670944001019713706041716807, −2.94130919827521830364448199075, −1.94432058728612851558455956249, −1.41061215283782895602970449161, 0,
1.41061215283782895602970449161, 1.94432058728612851558455956249, 2.94130919827521830364448199075, 3.45670944001019713706041716807, 3.93457430501747981709783061947, 4.91701865173131690987279015407, 5.14315867430249819520966908961, 5.78278146656308043215275589783, 6.06268117574169472565081211288, 6.63943032838070153707090868671, 6.90680275705825059714993956526, 7.60947383493433245341346620710, 8.101799801217331695896631501934, 8.394198173691313675274678569583