L(s) = 1 | − 4·7-s − 25-s − 2·37-s − 20·43-s + 9·49-s + 4·67-s + 28·79-s + 22·109-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 14·169-s + 173-s + 4·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | − 1.51·7-s − 1/5·25-s − 0.328·37-s − 3.04·43-s + 9/7·49-s + 0.488·67-s + 3.15·79-s + 2.10·109-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.07·169-s + 0.0760·173-s + 0.302·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.050170418\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.050170418\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.508223105035155406740876662947, −7.972054802391278854810172128354, −7.55619236906060410148899061028, −6.84438419074630738001060084198, −6.72059817438280470988599638852, −6.23608013684021156446636446687, −5.78665757482908124943983848048, −5.10476320968109623770249342776, −4.81387435522668107618366033053, −3.96931171960197304206812975638, −3.45858780655776907678316161835, −3.20064445851251945725995627989, −2.39832020689399627116489264627, −1.70640546426418867540413705485, −0.51498536895014379252286254345,
0.51498536895014379252286254345, 1.70640546426418867540413705485, 2.39832020689399627116489264627, 3.20064445851251945725995627989, 3.45858780655776907678316161835, 3.96931171960197304206812975638, 4.81387435522668107618366033053, 5.10476320968109623770249342776, 5.78665757482908124943983848048, 6.23608013684021156446636446687, 6.72059817438280470988599638852, 6.84438419074630738001060084198, 7.55619236906060410148899061028, 7.972054802391278854810172128354, 8.508223105035155406740876662947