L(s) = 1 | − 3-s + 3·11-s − 6·13-s − 4·16-s + 3·17-s − 3·19-s + 3·25-s + 4·27-s − 6·31-s − 3·33-s + 3·37-s + 6·39-s − 12·47-s + 4·48-s − 4·49-s − 3·51-s + 3·57-s + 17·67-s + 24·71-s − 3·75-s − 7·81-s + 18·89-s + 6·93-s − 9·101-s + 9·109-s − 3·111-s + 9·113-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.904·11-s − 1.66·13-s − 16-s + 0.727·17-s − 0.688·19-s + 3/5·25-s + 0.769·27-s − 1.07·31-s − 0.522·33-s + 0.493·37-s + 0.960·39-s − 1.75·47-s + 0.577·48-s − 4/7·49-s − 0.420·51-s + 0.397·57-s + 2.07·67-s + 2.84·71-s − 0.346·75-s − 7/9·81-s + 1.90·89-s + 0.622·93-s − 0.895·101-s + 0.862·109-s − 0.284·111-s + 0.846·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961311 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961311 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.935322747816453095042923623228, −7.43041297806588240718290428045, −6.88886624979378547960752879584, −6.53502042577489063110653387067, −6.43277175562229230913123730651, −5.57099709901224003127203453141, −5.11339976412187934944202631996, −4.87696576807597648427388114522, −4.33941267588924836802297779070, −3.71784894557919390235888777459, −3.20467365999786331932186000044, −2.38817897782664356706357578105, −2.01430570630827202000356084721, −1.00253527581590629456738759737, 0,
1.00253527581590629456738759737, 2.01430570630827202000356084721, 2.38817897782664356706357578105, 3.20467365999786331932186000044, 3.71784894557919390235888777459, 4.33941267588924836802297779070, 4.87696576807597648427388114522, 5.11339976412187934944202631996, 5.57099709901224003127203453141, 6.43277175562229230913123730651, 6.53502042577489063110653387067, 6.88886624979378547960752879584, 7.43041297806588240718290428045, 7.935322747816453095042923623228