Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 19 x^{2} )( 1 + 3 x + 19 x^{2} )$ |
$1 + 3 x + 38 x^{2} + 57 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.611823923823$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $8$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $460$ | $156400$ | $46071760$ | $16874308800$ | $6138729787300$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $23$ | $429$ | $6716$ | $129481$ | $2479193$ | $47052582$ | $893834027$ | $16983548881$ | $322687674884$ | $6131066595549$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=13 x^6+16 x^5+14 x^4+11 x^3+17 x^2+6 x+9$
- $y^2=16 x^6+8 x^5+15 x^4+3 x^3+13 x^2+16 x+4$
- $y^2=11 x^6+11 x^5+3 x^4+11 x^3+13 x^2+9 x+10$
- $y^2=2 x^6+7 x^5+15 x^4+16 x^3+15 x^2+10 x+5$
- $y^2=13 x^6+x^5+15 x^4+18 x^3+15 x^2+3 x+17$
- $y^2=8 x^6+13 x^5+x^4+6 x^3+3 x^2+x+11$
- $y^2=4 x^6+7 x^5+6 x^4+15 x^3+11 x^2+15 x+6$
- $y^2=x^6+5 x^5+5 x^4+8 x^3+4 x^2+6 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.a $\times$ 1.19.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{19^{2}}$ is 1.361.bd $\times$ 1.361.bm. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.ad_bm | $2$ | (not in LMFDB) |