Properties

Label 2.37.ad_ce
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 37 x^{2} )( 1 + 3 x + 37 x^{2} )$
  $1 - 3 x + 56 x^{2} - 111 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.335828188403$, $\pm0.579312881556$
Angle rank:  $2$ (numerical)
Jacobians:  $96$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1312$ $2020480$ $2572984192$ $3512119564800$ $4809062636136352$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $35$ $1473$ $50798$ $1873969$ $69350855$ $2565632886$ $94930991771$ $3512483064961$ $129961780385366$ $4808584321729593$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The isogeny class factors as 1.37.ag $\times$ 1.37.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.aj_do$2$(not in LMFDB)
2.37.d_ce$2$(not in LMFDB)
2.37.j_do$2$(not in LMFDB)