L(s) = 1 | − 3-s + 9-s + 2·11-s − 2·17-s + 4·19-s − 3·25-s − 27-s − 2·33-s − 6·41-s − 10·43-s − 5·49-s + 2·51-s − 4·57-s − 4·59-s − 11·67-s − 25·73-s + 3·75-s + 81-s − 20·83-s + 12·89-s − 2·97-s + 2·99-s + 6·107-s − 10·121-s + 6·123-s + 127-s + 10·129-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 0.603·11-s − 0.485·17-s + 0.917·19-s − 3/5·25-s − 0.192·27-s − 0.348·33-s − 0.937·41-s − 1.52·43-s − 5/7·49-s + 0.280·51-s − 0.529·57-s − 0.520·59-s − 1.34·67-s − 2.92·73-s + 0.346·75-s + 1/9·81-s − 2.19·83-s + 1.27·89-s − 0.203·97-s + 0.201·99-s + 0.580·107-s − 0.909·121-s + 0.541·123-s + 0.0887·127-s + 0.880·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.553812567950771800089119313879, −7.926918401477742368879889967098, −7.51073820975455251784392364931, −6.99744129939434586257429357413, −6.61605362885247922164960036588, −6.11905064377903532147069166154, −5.62022252015488082036982977050, −5.17610415798908488533529088989, −4.50208112838872631003147557771, −4.21436442352872031950225779131, −3.34390997471376549751511136793, −2.99418993510939899326900494562, −1.88446349242853262003918087061, −1.34726131444899479941773237384, 0,
1.34726131444899479941773237384, 1.88446349242853262003918087061, 2.99418993510939899326900494562, 3.34390997471376549751511136793, 4.21436442352872031950225779131, 4.50208112838872631003147557771, 5.17610415798908488533529088989, 5.62022252015488082036982977050, 6.11905064377903532147069166154, 6.61605362885247922164960036588, 6.99744129939434586257429357413, 7.51073820975455251784392364931, 7.926918401477742368879889967098, 8.553812567950771800089119313879