Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 67 x^{2} )( 1 + 7 x + 67 x^{2} )$ |
$1 + 11 x + 162 x^{2} + 737 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.578570930462$, $\pm0.640638367129$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $48$ |
Isomorphism classes: | 200 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5400$ | $21081600$ | $89917192800$ | $406003366656000$ | $1823011141757157000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $79$ | $4693$ | $298960$ | $20147929$ | $1350253489$ | $90457905526$ | $6060706502083$ | $406067730625201$ | $27206534414250160$ | $1822837801657891093$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=6 x^6+39 x^5+47 x^4+22 x^3+7 x^2+16 x+18$
- $y^2=62 x^6+65 x^5+10 x^4+25 x^3+58 x^2+65 x+30$
- $y^2=6 x^6+9 x^5+x^4+42 x^3+3 x^2+20 x+29$
- $y^2=45 x^6+26 x^5+21 x^4+2 x^3+38 x^2+30 x+7$
- $y^2=28 x^6+55 x^5+34 x^4+23 x^3+x^2+22 x+24$
- $y^2=10 x^6+41 x^5+64 x^4+54 x^3+42 x^2+49 x+16$
- $y^2=54 x^6+19 x^5+34 x^4+36 x^3+43 x^2+49 x+59$
- $y^2=34 x^6+56 x^5+44 x^4+58 x^3+65 x^2+36 x+22$
- $y^2=60 x^6+42 x^5+20 x^4+48 x^3+57 x^2+55 x$
- $y^2=46 x^6+47 x^5+10 x^4+43 x^3+21 x^2+31 x+39$
- $y^2=49 x^6+9 x^5+49 x^4+43 x^3+9 x^2+2 x+59$
- $y^2=45 x^6+15 x^5+31 x^4+32 x^3+49 x^2+51 x+49$
- $y^2=29 x^5+16 x^4+24 x^3+28 x^2+41 x+33$
- $y^2=18 x^6+x^5+59 x^4+60 x^3+12 x^2+6 x+13$
- $y^2=58 x^6+63 x^5+28 x^4+58 x^3+34 x^2+18 x+18$
- $y^2=60 x^6+65 x^5+3 x^4+3 x^3+24 x^2+57 x+65$
- $y^2=65 x^6+14 x^5+62 x^4+44 x^3+30 x^2+19 x+13$
- $y^2=28 x^6+46 x^5+11 x^4+14 x^3+28 x^2+52 x+41$
- $y^2=20 x^6+58 x^5+52 x^4+19 x^3+31 x^2+43 x$
- $y^2=27 x^6+38 x^5+14 x^4+23 x^3+19 x^2+34 x+9$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.e $\times$ 1.67.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.al_gg | $2$ | (not in LMFDB) |
2.67.ad_ec | $2$ | (not in LMFDB) |
2.67.d_ec | $2$ | (not in LMFDB) |