Properties

Label 2.67.l_gg
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 + 4 x + 67 x^{2} )( 1 + 7 x + 67 x^{2} )$
  $1 + 11 x + 162 x^{2} + 737 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.578570930462$, $\pm0.640638367129$
Angle rank:  $2$ (numerical)
Jacobians:  $48$
Isomorphism classes:  200

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5400$ $21081600$ $89917192800$ $406003366656000$ $1823011141757157000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $79$ $4693$ $298960$ $20147929$ $1350253489$ $90457905526$ $6060706502083$ $406067730625201$ $27206534414250160$ $1822837801657891093$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.e $\times$ 1.67.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.al_gg$2$(not in LMFDB)
2.67.ad_ec$2$(not in LMFDB)
2.67.d_ec$2$(not in LMFDB)