Properties

Label 2.83.u_iw
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $( 1 + 4 x + 83 x^{2} )( 1 + 16 x + 83 x^{2} )$
  $1 + 20 x + 230 x^{2} + 1660 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.570451901237$, $\pm0.841198311973$
Angle rank:  $2$ (numerical)
Jacobians:  $410$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8800$ $47872000$ $326472546400$ $2252147814400000$ $15516088846235164000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $104$ $6950$ $570968$ $47455278$ $3939052744$ $326941779350$ $27136030789048$ $2252292313659358$ $186940255865983784$ $15516041180334479750$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 410 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The isogeny class factors as 1.83.e $\times$ 1.83.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.au_iw$2$(not in LMFDB)
2.83.am_dy$2$(not in LMFDB)
2.83.m_dy$2$(not in LMFDB)