Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 83 x^{2} )( 1 + 16 x + 83 x^{2} )$ |
$1 + 20 x + 230 x^{2} + 1660 x^{3} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.570451901237$, $\pm0.841198311973$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $410$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8800$ | $47872000$ | $326472546400$ | $2252147814400000$ | $15516088846235164000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $104$ | $6950$ | $570968$ | $47455278$ | $3939052744$ | $326941779350$ | $27136030789048$ | $2252292313659358$ | $186940255865983784$ | $15516041180334479750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 410 curves (of which all are hyperelliptic):
- $y^2=33 x^6+10 x^5+71 x^4+21 x^3+46 x^2+21 x+32$
- $y^2=37 x^6+23 x^5+81 x^4+40 x^3+8 x^2+55 x+51$
- $y^2=70 x^6+81 x^5+63 x^4+12 x^3+82 x^2+28 x+38$
- $y^2=47 x^6+70 x^5+26 x^4+77 x^3+51 x^2+7 x+9$
- $y^2=80 x^6+65 x^5+73 x^4+68 x^3+20 x^2+11 x+24$
- $y^2=77 x^6+5 x^5+33 x^4+10 x^3+28 x^2+13 x+3$
- $y^2=37 x^6+31 x^5+76 x^4+8 x^3+14 x^2+41 x+36$
- $y^2=61 x^6+9 x^5+19 x^4+55 x^3+19 x^2+9 x+61$
- $y^2=9 x^6+10 x^5+45 x^4+25 x^3+28 x^2+12 x+74$
- $y^2=65 x^6+24 x^5+12 x^4+64 x^3+13 x^2+66 x+38$
- $y^2=65 x^6+10 x^5+21 x^4+x^3+45 x^2+38 x+1$
- $y^2=54 x^6+34 x^5+4 x^4+54 x^3+67 x^2+65 x+78$
- $y^2=3 x^6+72 x^5+32 x^4+22 x^3+79 x^2+78 x+79$
- $y^2=27 x^6+26 x^5+66 x^4+4 x^3+32 x^2+49 x+3$
- $y^2=x^6+30 x^5+17 x^4+16 x^3+68 x^2+36 x+12$
- $y^2=74 x^6+33 x^5+41 x^4+30 x^3+6 x^2+22 x+21$
- $y^2=73 x^6+19 x^5+47 x^4+5 x^3+47 x^2+19 x+73$
- $y^2=21 x^6+23 x^5+81 x^4+79 x^3+3 x^2+48 x+38$
- $y^2=15 x^6+8 x^5+43 x^4+33 x^3+66 x^2+64 x+31$
- $y^2=29 x^6+58 x^5+34 x^4+13 x^3+10 x^2+63 x+70$
- and 390 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.e $\times$ 1.83.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.au_iw | $2$ | (not in LMFDB) |
2.83.am_dy | $2$ | (not in LMFDB) |
2.83.m_dy | $2$ | (not in LMFDB) |