L(s) = 1 | + 2-s + 4-s − 7-s + 8-s − 4·11-s − 14-s + 16-s − 4·22-s + 8·23-s + 6·25-s − 28-s + 4·29-s + 32-s − 20·37-s − 12·43-s − 4·44-s + 8·46-s + 49-s + 6·50-s − 4·53-s − 56-s + 4·58-s + 64-s + 4·67-s − 20·74-s + 4·77-s + 8·79-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 1.20·11-s − 0.267·14-s + 1/4·16-s − 0.852·22-s + 1.66·23-s + 6/5·25-s − 0.188·28-s + 0.742·29-s + 0.176·32-s − 3.28·37-s − 1.82·43-s − 0.603·44-s + 1.17·46-s + 1/7·49-s + 0.848·50-s − 0.549·53-s − 0.133·56-s + 0.525·58-s + 1/8·64-s + 0.488·67-s − 2.32·74-s + 0.455·77-s + 0.900·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.50079486455555954715535670721, −6.97691300383953710655655456374, −6.70193141928706788753319140457, −6.54579638404460532631428676053, −5.71903976587663779229272962989, −5.22617719622723631613958176296, −5.02992090451124454001177669183, −4.78260510683382001760768018761, −3.94926308341524961919745044196, −3.37294431985496213272708453791, −3.08551966788659485422017339820, −2.62199725884763134242457022445, −1.88823954991993936773991656908, −1.15547407388376371069838846451, 0,
1.15547407388376371069838846451, 1.88823954991993936773991656908, 2.62199725884763134242457022445, 3.08551966788659485422017339820, 3.37294431985496213272708453791, 3.94926308341524961919745044196, 4.78260510683382001760768018761, 5.02992090451124454001177669183, 5.22617719622723631613958176296, 5.71903976587663779229272962989, 6.54579638404460532631428676053, 6.70193141928706788753319140457, 6.97691300383953710655655456374, 7.50079486455555954715535670721