Properties

Label 2.43.m_di
Base field $\F_{43}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 + 43 x^{2} )( 1 + 12 x + 43 x^{2} )$
  $1 + 12 x + 86 x^{2} + 516 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.867802827160$
Angle rank:  $1$ (numerical)
Jacobians:  $82$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2464$ $3469312$ $6335833504$ $11676705030144$ $21609755552101024$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $1878$ $79688$ $3415438$ $146996696$ $6321648678$ $271817596904$ $11688200166046$ $502592574835064$ $21611482763302518$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 82 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43^{2}}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.a $\times$ 1.43.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{43}$
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.acg $\times$ 1.1849.di. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.am_di$2$(not in LMFDB)